精英家教网 > 高中数学 > 题目详情
已知函数f(x)=2+log3x,定义域为[
181
,81]
,求函数g(x)=[f(x)]2-f(x2)的最值,并指出g(x)取得最值时相应自变量x的取值.
分析:先求函数g(x)=[f(x)]2-f(x2)的定义域,将f(x)=2+log3x代入y=[f(x)]2+f(x2)中,整理化简为关于log3x的函数,利用换元法求最值.
解答:解:要使函数有意义,必须
1
81
≤x≤81且
1
81
≤x2≤81,解得
1
9
≤x≤9
又y=(2+log3x)2-(2+log3x2)=(log3x)2+2log3x+2
令t=log3x,y=t2+2t+2=(t+1)2+1,由
1
9
≤x≤9得-2≤t≤2,
当t=-1时,即x=
1
3
时,ymin=1,当t=2时,即x=9时,ymax=10,
点评:此题是个中档题.本题考查换元法求函数的值域问题,以及对数函数的单调性与特点,在使用换元法时,注意范围.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2-
1
x
,(x>0),若存在实数a,b(a<b),使y=f(x)的定义域为(a,b)时,值域为(ma,mb),则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2+log0.5x(x>1),则f(x)的反函数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(m-1)x2-4mx+2m-1
(1)m为何值时,函数的图象与x轴有两个不同的交点;
(2)如果函数的一个零点在原点,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•上海)已知函数f(x)=2-|x|,无穷数列{an}满足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4
(2)若a1>0,且a1,a2,a3成等比数列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差数列?若存在,求出所有这样的a1,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式选讲
已知函数f(x)=2|x-2|-x+5,若函数f(x)的最小值为m
(Ⅰ)求实数m的值;
(Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案