精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)当时,求不等式的解集;

2)若的图像与轴围成直角三角形,的值.

【答案】12

【解析】

1)分3段去绝对值解不等式组,再求并;

2)将yfx)去绝对值写出分段函数,根据其图象与x轴围成直角三角形,转化为(a1)(a+1)=﹣1或(a+1)(1a)=﹣1,可解得.

1)当a2时,不等式fx)>1,即|x+1||2x3|1

x1时,原不等式可化为﹣x1+2x31,解得x5,因为x1,所以此时原不等式无解;

当﹣1时,原不等式可化为x+1+2x31,解得x1,所以1x

x时,原不等式可化为x+12x+31,解得x3,所以x3

综上,原不等式的解集为{x|1x3}

2)因为,所以,所以

因为,所以,

时,要使得的图象与轴围成直角三角形,

,解得,舍去;

时,的图象与轴不能围成三角形,不符合题意,舍去;

时,要使得的图象与轴围成直角三角形,

,解得,因为,所以.

综上,所求的值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点A是椭圆的上顶点,斜率为的直线交椭圆EAM两点,点N在椭圆E上,且

1)当时,求的面积;

2)当时,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“科技引领,布局未来”科技研发是企业发展的驱动力量.2007年至2018年,某企业连续12年累计研发投入达4100亿元,我们将研发投入与经营收入的比值记为研发投入占营收比.这12年间的研发投入(单位:十亿元)用图中的条形图表示,研发投入占营收比用图中的折线图表示.

根据折线图和条形图,下列结论错误的是(  )

A. 2012﹣2013 年研发投入占营收比增量相比 2017﹣2018 年增量大

B. 该企业连续 12 年研发投入逐年增加

C. 2015﹣2016 年研发投入增值最大

D. 该企业连续 12 年研发投入占营收比逐年增加

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校进入高中数学竞赛复赛的学生中,高一年级有6人,高二年级有12人, 高三年级有24人,现采用分层抽样的方法从这些学生中抽取7人进行采访.

(1)求应从各年级分别抽取的人数;

(2)若从抽取的7人中再随机抽取2人做进一步了解(注高一学生记为,高二学生记为,高三学生记为

①列出所有可能的抽取结果;

②求抽取的2人均为高三年级学生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“工资条里显红利,个税新政入民心”.随着2019年新年钟声的敲响,我国自1980年以来,力度最大的一次个人所得税(简称个税)改革迎来了全面实施的阶段.某从业者为了解自己在个税新政下能享受多少税收红利,绘制了他在26岁-35岁(2009年-2018年)之间各年的月平均收入(单位:千元)的散点图:(注:年龄代码1-10分别对应年龄26-35岁)

(1)由散点图知,可用回归模型拟合的关系,试根据有关数据建立关于的回归方程;

(2)如果该从业者在个税新政下的专项附加扣除为3000元/月,试利用(1)的结果,将月平均收入视为月收入,根据新旧个税政策,估计他36岁时每个月少缴纳的个人所得税.

附注:参考数据:

,其中:取.

参考公式:回归方程中斜率和截距的最小二乘估计分别为.

新旧个税政策下每月应纳税所得额(含税)计算方法及税率表如下:

旧个税税率表(个税起征点3500元)

新个税税率表(个税起征点5000元)

缴税

级数

每月应纳税所得额(含税)收入个税起征点

税率

每月应纳税所得额(含税)收入个税起征点专项附加扣除

税率

1

不超过1500元的都分

3

不超过3000元的都分

3

2

超过1500元至4500元的部分

10

超过3000元至12000元的部分

10

3

超过4500元至9000元的部分

20

超过12000元至25000元的部分

20

4

超过9000元至35000元的部分

25

超过25000元至35000元的部分

25

5

超过35000元至55000元的部分

30

超过35000元至55000元的部分

30

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,椭圆的左焦点为,椭圆上任意点到的最远距离是,过直线轴的交点任作一条斜率不为零的直线与椭圆交于不同的两点,点关于轴的对称点为.

(1)求椭圆的方程;

(2)求证:三点共线;

(3)求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列推理不属于合情推理的是( )

A. 由铜、铁、铝、金、银等金属能导电,得出一切金属都能导电.

B. 半径为的圆面积,则单位圆面积为.

C. 由平面三角形的性质推测空间三棱锥的性质.

D. 猜想数列2,4,8,…的通项公式为. .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设抛物线的焦点为,直线交于两点,的面积为.

(1)求的方程;

(2)若上的两个动点,,试问:是否存在定点,使得?若存在,求的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三条直线),,若的距离是.

1)求a的值:

2)能否找到一点P,使得点P同时满足下列三个条件:①P是第一象限的点;②点P的距离是点P的距离的;③点P的距离与点P的距离之比是,若能,求出点P的坐标,若不能,请说明理由.

查看答案和解析>>

同步练习册答案