精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x2(x+3),若f′(x)=0,则(  )
A、x=0
B、x=0或x=-2
C、x=-
3
2
D、x=-2
考点:导数的运算
专题:导数的概念及应用
分析:先根据导数的运算法则,求导,再解方程即可
解答: 解:∵f(x)=x2(x+3)=x3+3x2
∴f′(x)=3x2+6x,
∵f′(x)=0,
∴3x2+6x=0,
解得x=0,或x=-2,
故选:B
点评:本题考查了导数的运算法则和方程的解法,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

“a<3”是“函数f(x)=x3-ax在[1,+∞)单调递增”的(  )
A、充分而不必要条件
B、不要而不充分条件
C、既不充分也不必要条件
D、充要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

若f(x)=aln(
x2+1
+x)+bx3+2,且f(2)=5,则f(-2)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数f(x)=-(log
1
2
x
2-log
1
4
x
+2在2≤x≤4范围内的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

设等比数列{an}的首项为a1,公比为q,则{an}单调递减的充要条件是(  )
A、|q|<1,且q≠0
B、a1>0,0<q<1
C、a1<0,q>1
D、a1>0,0<q<1或a1<0,q>1

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=2x(x∈N)是(  )
A、偶函数B、奇函数
C、非奇非偶函数D、既奇又偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx+
1
x
+ax,x∈(0,+∞)(a是实数),g(x)=
2x
x2+1
+1.
(1)若函数f(x)在[1,+∞)上是单调函数,求a的取值范围;
(2)是否存在正实数a满足:对于任意x1∈[1,2],总存在x2∈[1,2],使得f(x1)=g(x2)成立,若存在,求出a的范围;若不存在,请说明理由;
(3)若数列{xn}满足x1=
1
2
,xn+1=g(xn)-1,求证:
(x1-x2)2
x1x2
+
(x2-x3)2
x2x3
+…+
(xn-xn+1)2
xnxn+1
5
16

查看答案和解析>>

科目:高中数学 来源: 题型:

有四个数,其中前三个数成等差数列,后三个数成等比数列,并且第一个数与第四个数是28,中间两数的和是10,求这四个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数y=lg(3-x)+
16-x2
的定义域.

查看答案和解析>>

同步练习册答案