精英家教网 > 高中数学 > 题目详情
设函数f(x)=
2x,x≤0
x2-2x+1,x>0
若关于x的方程f2(x)=af(x)恰有四个不同的实数解,则实数a的取值范围为(  )
A、(-∞,0)
B、(0,1)
C、[0,1]
D、(1,+∞)
分析:由已知中函数f(x)=
2x,x≤0
x2-2x+1,x>0
若关于x的方程f2(x)=af(x)恰有四个不同的实数解,我们可以根据函数f(x)的图象得到f(x)=a恰有三个不同的实数解,进而得到实数a的取值范围.
解答:解:函数f(x)=
2x,x≤0
x2-2x+1,x>0
的图象如下图所示:
精英家教网
关于x的方程f2(x)=af(x)可转化为:
f(x)=0,或f(x)=a,
若关于x的方程f2(x)=af(x)恰有四个不同的实数解,
则f(x)=a恰有三个不同的实数解,
由图可知:0<a<1
故选B
点评:本题考查的知识点是根的存在性及根的个数判断,其中根据已知中函数的解析式,画出函数的图象,再利用数形结合是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=
2x+1x2+2

(Ⅰ)求f(x)的单调区间和极值;
(Ⅱ)若对一切x∈R,-3≤af(x)+b≤3,求a-b的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
2x
|x|+1
(x∈R)
,区间M=[a,b](其中a<b),集合N={y|y=f(x),x∈M},则使M=N成立的实数对(a,b)有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•重庆三模)设函数f(x)=
2x+3
3x-1
,则f-1(1)
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
2
x+2
,点A0表示原点,点An=[n,f(n)](n∈N*).若向量
an
=
A0A1
+
A1A2
+…+
An-1An
,θn
an
i
的夹角[其中
i
=(1,0)]
,设Sn=tanθ1+tanθ2+…+tanθn,则
lim
n→∞
Sn
=
3
4
2
3
4
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
2x-3,x≥1
1-3x
x
,0<x<1
,若f(x0)=1,则x0等于(  )

查看答案和解析>>

同步练习册答案