精英家教网 > 高中数学 > 题目详情
设抛物线的焦点为,准线为,以为圆心的圆相切于点的纵坐标为是圆轴除外的另一个交点.
(I)求抛物线与圆的方程;
( II)已知直线交于两点,交于点,且, 求的面积.
(I)抛物线为:,圆的方程为:;  ( II) .

试题分析:(I)根据抛物线的方程与准线,可得,由的纵坐标为的纵坐标为,即 ,,由题意可知:,则在等腰三角形中有,由于不重合,则.则抛物线与圆的方程就得出.
(II)根据题意可得三角形是直角三角形,又因,则的中点,即解得.
联立直线与抛物线方程得则由弦长公式得,又根据点到直线的距离得出的距离,从而得出.
试题解析:(I)根据抛物线的定义:有的纵坐标为的纵坐标为
 ,,则,又由
则抛物线为:,圆的方程为:
( II)由,
根据题意可得三角形是直角三角形,又因,则的中点,即解得.
,根据点到直线的距离得出的距离,从而得出.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,已知椭圆的左焦点为,且椭圆的离心率.
(1)求椭圆的方程;
(2)设椭圆的上下顶点分别为,是椭圆上异于的任一点,直线分别交轴于点,证明:为定值,并求出该定值;
(3)在椭圆上,是否存在点,使得直线与圆相交于不同的两点,且的面积最大?若存在,求出点的坐标及对应的的面积;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知一个圆的圆心为坐标原点,半径为.从这个圆上任意一点轴作垂线为垂足.
(Ⅰ)求线段中点的轨迹方程;
(Ⅱ)已知直线的轨迹相交于两点,求的面积

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线的顶点在坐标原点,焦点在轴上,且过点.

(Ⅰ)求抛物线的标准方程;
(Ⅱ)与圆相切的直线交抛物线于不同的两点若抛物线上一点满足,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的中心为原点,长轴长为,一条准线的方程为.
(Ⅰ)求该椭圆的标准方程;
(Ⅱ)射线与椭圆的交点为,过作倾斜角互补的两条直线,分别与椭圆交于 两点(两点异于).求证:直线的斜率为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆过点,离心率为.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点且斜率为)的直线与椭圆相交于两点,直线分别交直线 于两点,线段的中点为.记直线的斜率为,求证: 为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知动点到定点的距离之和为.
(Ⅰ)求动点轨迹的方程;
(Ⅱ)设,过点作直线,交椭圆异于两点,直线的斜率分别为,证明:为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知两定点,如果动点满足,则点的轨迹所包围的图形的面积等于(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知曲线,曲线,P是平面上一点,若存在过点P的直线与都有公共点,则称P为“C1—C2型点”.

(1)在正确证明的左焦点是“C1—C2型点”时,要使用一条过该焦点的直线,试写出一条这样的直线的方程(不要求验证);
(2)设直线有公共点,求证,进而证明原点不是“C1—C2型点”;
(3)求证:圆内的点都不是“C1—C2型点”.

查看答案和解析>>

同步练习册答案