精英家教网 > 高中数学 > 题目详情
4.已知四棱锥P-ABCD的底面为平行四边形,PD⊥平面ABCD,M在边PC上
(Ⅰ)当M在边PC上什么位置时,AP∥平面MBD?并给出证明.
(Ⅱ)在(Ⅰ)条件之下,若AD⊥PB,求证:BD⊥平面PAD.

分析 (Ⅰ)M是PC中点时,AC与BD的交点O是AC的中点,从而OM∥PA,由此能证明AP∥平面MBD.
(Ⅱ)推导出PD⊥AD,AD⊥BD,PD⊥BD,由此能证明BD⊥平面PAD.

解答 解:(Ⅰ)M是PC中点时,AP∥平面MBD.
证明:∵底面ABCD是平行四边形,
∴AC与BD的交点O是AC的中点,
又M是PC的中点,∴OM∥PA,
∵OM?平面MBD,AP?平面MBD,
∴AP∥平面MBD.
证明:(Ⅱ)∵PD⊥平面ABCD,AD?平面ABCD,∴PD⊥AD,
又AD⊥PB,PD∩PB=P,∴AD⊥平面PBD,∴AD⊥BD,
∵PD⊥平面ABCD,BD?平面ABCD,
∴PD⊥BD,
∵PD∩AD=D,∴BD⊥平面PAD.

点评 本题考查满足线面平行的点的位置的确定与证明,考查线面垂直的证明,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知Ω是集合{(x,y)|0≤x≤6,0≤y≤4}所表示图形边界上的整点(横、纵坐标都是整数的点)的集合,集合D={(6,0),(-6,0),(0,4),(0,-4),(4,-4),(-4,4),(2,-2),(-2,2)}.规定:
(1)对于任意的a=(x1,y1)∈Ω,b=(x2,y2)∈D,a+b=(x1,y1)+(x2,y2)=(x1+x2,y1+y2
(2)对于任意的k∈N*,序列ak,bk满足:
①ak∈Ω,bk∈D
②a1=(0,0),ak=ak-1+bk-1,k≥2,k∈N*
(Ⅰ) 求a2
(Ⅱ) 证明:?k∈N*,ak≠(5,0)
(Ⅲ) 若ak=(6,2),写出满足条件的k的最小值及相应的a1,a2,…,ak

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.从1,2,3,4,5,6这六个数中一次随机地取2个数,则所取2个数的和能被3整除的概率为$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知a,b,c为正实数,$\frac{1}{{a}^{3}}$+$\frac{1}{{b}^{3}}$+$\frac{1}{{c}^{3}}$+27abc的最小值为m,解关于x的不等式|x+l|-2x<m.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知双曲线以△ABC的顶点B,C为焦点,且经过点A,若△ABC内角的对边分别为a,b,c.且a=4,b=5,$c=\sqrt{21}$,则此双曲线的离心率为(  )
A.$5-\sqrt{21}$B.$\frac{{\sqrt{21}+5}}{2}$C.$5+\sqrt{21}$D.$\frac{{5-\sqrt{21}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在等差数列{an}中,a2=3,a3+a6=11
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=an+$\frac{1}{{2}^{{a}_{n}}}$,其中n∈N*,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.从3男2女共5名学生中任选2人参加座谈会,则选出的2人恰好为1男1女的概率为$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知直线3x-2y=0与圆(x-m)2+y2=1相交,则正整数m的值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知向量$\overrightarrow{a}$=(2,1),$\overrightarrow{b}$=(3,x)且$\overrightarrow{a}$•($\overrightarrow{a}$-2$\overrightarrow{b}$)=0,则|3$\overrightarrow{b}$|的值为(  )
A.$\sqrt{140}$B.$\frac{3}{2}\sqrt{85}$C.$\sqrt{120}$D.$\sqrt{110}$

查看答案和解析>>

同步练习册答案