精英家教网 > 高中数学 > 题目详情
在△ABC中,角A,B,C所对的边分别为a,b,c,其中a=2,c=3,且满足(2a-c)•cosB=b•cosC,则
AB
BC
=
 
分析:通过正弦定理把a,c,b换成sinA,sinB,sinC代入(2a-c)•cosB=b•cosC,求得B,再根据向量积性质,求得结果.
解答:解:∵(2a-c)cosB=bcosC
根据正弦定理得:
(2sinA-sinC)cosB=sinBcosC
2sinAcosB=sinBcosC+sinCcosB
2sinAcosB=sin(B+C)
2sinAcosB=sinA
∴cosB=
1
2

∴B=60°
AB
BC
=-|
AB
|•
|BC
|
cosB=-(2×3×
1
2
)=-3
故答案为:-3
点评:本题主要考查了正弦定理和向量积的问题.再使用向量积时,要留意向量的方向.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a,b,c,若b2+c2-a2=
3
bc
,且b=
3
a
,则下列关系一定不成立的是(  )
A、a=c
B、b=c
C、2a=c
D、a2+b2=c2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别为a,b,c,已知B=60°,cos(B+C)=-
1114

(1)求cosC的值;
(2)若bcosC+acosB=5,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别是a,b,c,且bsinA=
3
acosB

(1)求角B的大小;
(2)若a=4,c=3,D为BC的中点,求△ABC的面积及AD的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a、b、c并且满足
b
a
=
sinB
cosA

(1)求∠A的值;
(2)求用角B表示
2
sinB-cosC
,并求它的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对边的长分别为a,b,c,且a=
5
,b=3,sinC=2sinA
,则sinA=
 

查看答案和解析>>

同步练习册答案