精英家教网 > 高中数学 > 题目详情

若ax2+4ax+3≥0恒成立,a的取值范围是


  1. A.
    (0,数学公式]
  2. B.
    (0,数学公式
  3. C.
    [0,数学公式]
  4. D.
    [0,数学公式
C
分析:当a=0时,满足条件 ax2+4ax+3≥0恒成立.当a>0时,由求得a的范围,综合可得结论.
解答:当a=0时,满足条件 ax2+4ax+3≥0恒成立.
当a>0时,要使ax2+4ax+3≥0恒成立,需 ,解得 0<a≤
综上可得,0≤a≤
故选C.
点评:本题主要考查二次函数的性质,函数的恒成立问题,体现了分类讨论的数学思想,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知:抛物线y=ax2+4ax+t与x轴的一个交点为A(-1,0);
(1)求抛物线与x轴的另一个交点B的坐标;
(2)D是抛物线与y轴的交点,C是抛物线上的一点,且以AB为一底的梯形ABCD的面积为9,求此抛物线的解析式;
(3)E是第二象限内到x轴、y轴的距离的比为5:2的点,如果点E在(2)中的抛物线上,且它与点A在此抛物线对称轴的同侧,问:在抛物线的对称轴上是否存在点P,使△APE的周长最小?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中,不是真命题的为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知:抛物线y=ax2+4ax+t与x轴的一个交点为A(-1,0);
(1)求抛物线与x轴的另一个交点B的坐标;
(2)D是抛物线与y轴的交点,C是抛物线上的一点,且以AB为一底的梯形ABCD的面积为9,求此抛物线的解析式;
(3)E是第二象限内到x轴、y轴的距离的比为5:2的点,如果点E在(2)中的抛物线上,且它与点A在此抛物线对称轴的同侧,问:在抛物线的对称轴上是否存在点P,使△APE的周长最小?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年四川省雅安中学高三(上)开学摸底数学试卷(解析版) 题型:解答题

已知:抛物线y=ax2+4ax+t与x轴的一个交点为A(-1,0);
(1)求抛物线与x轴的另一个交点B的坐标;
(2)D是抛物线与y轴的交点,C是抛物线上的一点,且以AB为一底的梯形ABCD的面积为9,求此抛物线的解析式;
(3)E是第二象限内到x轴、y轴的距离的比为5:2的点,如果点E在(2)中的抛物线上,且它与点A在此抛物线对称轴的同侧,问:在抛物线的对称轴上是否存在点P,使△APE的周长最小?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案