精英家教网 > 高中数学 > 题目详情
12.设集合I={(x,y)|x,y∈Z,0≤x≤5,≤y≤5}则以I中的点为顶点,且位置不同的正方形的个数是55.

分析 画出:画出点集I={(x,y)|x,y∈Z,0≤x≤5,≤y≤5}中的格点,分别求出以边长为1,2,3,4,5的正方形的个数.

解答 解:画出点集I={(x,y)|x,y∈Z,0≤x≤5,≤y≤5}中的格点.如图;
边长为1个单位长度的正方形,共有5×5=25个,
边长为2个单位长度的正方形,共有4×4=16个,
边长为3个单位长度的正方形,共有3×3=9个,
边长为4个单位长度的正方形,共有2×2=4个,
边长为5个单位长度的正方形,共有1×1=1个,
故位置不同的正方形的个数共有25+16+9+4+1=55个,
故答案为:55.

点评 解答关键是:利用分类讨论的数学思想求解时,一定要做到分类既不重复,又不遗漏.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.如图,圆E:(x+2)2+y2=4,点F(2,0),动圆P过点F,且与圆E内切于点M,求动圆P的圆心P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.如图,在△ABC中,AB=AC=4,∠BAC=90°,D是边BC的中点,求:
(1)$\overrightarrow{AB}$在$\overrightarrow{BD}$方向上的投影;
(2)$\overrightarrow{BD}$在$\overrightarrow{AB}$方向上的投影.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设数列{xn}的通项为xn=$\left\{\begin{array}{l}{\frac{n+1}{\sqrt{n}},n为奇数}\\{\frac{1}{n},n为偶数}\end{array}\right.$则{xn}是(  )
A.当n→∞时的无穷大量B.当n→∞时的无穷小量
C.有界变量D.无界变量

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在约束条件$\left\{\begin{array}{l}{x+y≤8}\\{x+y≥2}\\{y≤\frac{1}{2}x+5}\\{x≥0,y≥0}\end{array}\right.$下,求x=2x-y的最小值与最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图所示的茎叶图为甲、乙两家连锁店七天内销售额的某项指标统计:
(1)求甲家连锁店这项指标的平均数、中位数和众数,并比较甲、乙两该项指标的方差大小;
(2)每次都从甲、乙两店统计数据中随机各选一个进行对比分析,共选了7次(有放回选取),设选取的两个数据中甲的数据大于乙的数据的次数为X,求X的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=x|x-2a|
(1)化简f(x);
(2)试确定a的取值范围,使函数f(x)在区间[2,+∞)上是单调增函数;
(3)在(2)的条件下,求函数f(x)在区间[1,2]上的最大值g(a).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.如果函数f(x)=(2m-1)x2+mx+3在实数集R内是单调函数,那么m的值等于$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.函数f(x)=Asin(ωx+ϕ)$(A>0,ω>0,0<ϕ<\frac{π}{2})$的部分图象如图所示.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)已知函数$g(x)=sinx•f(\frac{x}{2})+\sqrt{3}$,$x∈[0,\frac{π}{2}]$,求g(x)的最值及其对应的x值.

查看答案和解析>>

同步练习册答案