精英家教网 > 高中数学 > 题目详情

不等式|x-2|+|2x+5|<6的解集为________.

{x|-3<x<-1}
分析:由不等式可得可得①,或 ②,或③.分别求得
①、②、③的解集,再取并集,即得所求.
解答:由不等式|x-2|+|2x+5|<6可得①,或 ②,或③
解①求得-3<x<-,解②求得-≤x<-1,解③求得 x∈∅.
把①、②、③的解集取并集,可得原不等式的解集为 {x|-3<x<-1},
故答案为 {x|-3<x<-1}.
点评:本题主要考查绝对值不等式的解法,体现了等价转化和分类讨论的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若不等式|x-2|+|x+3|>a,对于x∈R均成立,那么实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的不等式|x-2|+|x-3|<a
(Ⅰ)当a=2时,解不等式;
(Ⅱ)如果不等式的解集为空集,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式|x-2|+|x|≥a-
3a
对于任意实数x恒成立,则实数a的取值范围是
(-∞,-1]∪(0,3]
(-∞,-1]∪(0,3]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•和平区二模)若关于x的不等式|x+2|+|x-3|≤|a-1|存在实数解,则实数a的取值范围是.
(-∞,-4]∪[6,+∞)
(-∞,-4]∪[6,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•肇庆一模)不等式|x+2|+|x|≥4的解集是
(-∞,-3]∪[1,+∞)
(-∞,-3]∪[1,+∞)

查看答案和解析>>

同步练习册答案