精英家教网 > 高中数学 > 题目详情
8.下列说法中,正确的是(  )
A.命题“若am2<bm2,则a<b”的逆命题是真命题
B.命题“若x=y,则sinx=siny”的逆否命题为真命题
C.命题“p或q”为真命题,则命题“p”和命题“q”均为真命题
D.若p∧q为假命题,则p、q均为假命题

分析 A,若a<b⇒am2≤bm2”;
B,其逆否命题与原命题同真假,判定原命题真假即可;
C,命题“p或q”为真命题,则命题“p”和命题“q”至少一个为真命题;
D,若p∧q为假命题,则p、q至少一个为假命题.

解答 解:对于A,命题“若am2<bm2,则a<b”的逆命题是:“若a<b,则am2<bm2”是假命题,故错;
对于B,命题“若x=y,则sinx=siny”是真命题,其逆否命题与原命题同真假,故正确;
对于C,命题“p或q”为真命题,则命题“p”和命题“q”至少一个为真命题,故错;
对于D,若p∧q为假命题,则p、q至少一个为假命题,故错.
故选:B.

点评 本题考查了命题真假的判定,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.下列关于四边形ABCD判断正确的是(  )
①若$\overrightarrow{AD}=\overrightarrow{BC}$,则四边形ABCD是平行四边形;
②若$\overrightarrow{AD}=\frac{1}{3}\overrightarrow{BC}$,则四边形ABCD是梯形;
③若$\overrightarrow{AB}=\overrightarrow{DC},且|\overrightarrow{AB}|=|\overrightarrow{AD}|$,则四边形ABCD是菱形;
④若$|\overrightarrow{AB}+\overrightarrow{AD}|=|\overrightarrow{AB}-\overrightarrow{AD}|$,则四边形ABCD是矩形.
A.②③④B.①②③C.①③④D.①②③④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知命题$p:?{x_0}∈R,x_0^2+2{x_0}-m-1<0$,命题$q:对于?x∈[{1,4}],x+\frac{4}{x}>m$.
(1)写出命题p的否定形式;并求当命题p为真时,实数m的范围;
(2)若p和q一真一假,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知角α的终边经过点P(4,-3),则sinα+2cosα的值等于(  )
A.$-\frac{3}{5}$B.$-\frac{2}{5}$C.1D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知直线l垂直于直线3x-4y+10=0,直线l与两坐标轴围成的三角形的周长为5,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列函数没有零点的是(  )
A.$f(x)={log_2}^x-3$B.$f(x)=\sqrt{x}-4$C.f(x)=$\frac{1}{x-1}$D.f(x)=x2+2x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.求双曲线方程,它与椭圆x2+4y2=64有共同的焦点,且双曲线上的点到两焦点距离之差的绝对值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$1-\frac{2}{{{3^x}+1}}$
(Ⅰ)用定义证明f(x)是R上的增函数;
(Ⅱ)当x∈[-1,2]时,求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在四棱锥P-ABCD中,PC⊥底面ABCD,ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD=2,E是PB的中点.
(1)求证:平面EAC⊥平面PBC;
(2)若直线AE与平面PBC所成角的正弦值为$\frac{{2\sqrt{7}}}{7}$,求二面角P-AC-E的余弦值.

查看答案和解析>>

同步练习册答案