精英家教网 > 高中数学 > 题目详情

【题目】20191017日是全国第五个扶贫日,在扶贫日到来之际,某地开展精准扶贫,携手同行的主题活动,调查基层干部走访贫困户数量.A镇有基层干部50人,B镇有基层干部80人,C镇有基层干部70人,每人都走访了不少贫困户;按照分层抽样,从ABC三镇共选40名基层干部,统计他们走访贫困户的数量,并将完成走访数量分成5组:,绘制成如下频率分布直方图.

1)求这40人中有多少人来自B镇,并估算这40人平均走访多少贫困户?

2)如果把走访贫困户达到或超过25户视为工作出色,以频率估计概率,从三镇的所有基层干部中随机选取4人,记这4人中工作出色的人数为X,求X的数学期望.

【答案】116人,5700户(2

【解析】

1)由分层抽样按比例分配原则求得B镇比例,再从40人中按比例抽取即可;按照平均数等于各组中间数值乘以对应频率之和计算即可

2)由频率分布直方图,计算出工作出色的概率为,易知工作出色的人数符合二项分布,结合概率公式计算,列出分布列,即可求出数学期望

1ABC三镇分别有基层干部50人,80人,70人,共200人,利用分层抽的方法选40人,则B镇应选取(人)

40名基层干部走访贫困户的平均数量x

用样本估计总体,得三镇所有基层干部走访贫困户的总数量为(户)

2)由频率分布直方图得,从三镇的所有基层干部中随机挑选1人,

其工作出色的概率为

易知X的所有可能取值为01234,且,则

,所以X的分布列为

X

4

3

2

1

0

P

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.

(1)写出的普通方程及的直角坐标方程;

(2)设点上,点上,求的最小值及此时点的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知梯形中,,四边形为矩形,,平面平面

Ⅰ)求证:平面

Ⅱ)求平面与平面所成锐二面角的余弦值;

Ⅲ)在线段上是否存在点,使得直线与平面所成角的正弦值为,若存在,求出线段的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已如椭圆E)的离心率为,点E.

1)求E的方程:

2)斜率不为0的直线l经过点,且与E交于PQ两点,试问:是否存在定点C,使得?若存在,求C的坐标:若不存在,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定点,直线相交于点,且它们的斜率之积为,记动点的轨迹为曲线

(1)求曲线的方程;

(2)过点的直线与曲线交于两点,是否存在定点,使得直线斜率之积为定值,若存在,求出坐标;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知半圆分别为半圆轴的左、右交点,直线过点且与轴垂直,点在直线上,纵坐标为,若在半圆上存在点使,则的取值范围是( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为坐标原点,椭圆的左、右焦点分别为.过焦点且垂直于轴的直线与椭圆相交所得的弦长为3,直线与椭圆相切.

(1)求椭圆的标准方程;

(2)是否存在直线与椭圆相交于两点,使得?若存在,求的取值范围;若不存在,请说明理由!

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的函数满足,且为偶函数,若内单调递减,则下面结论正确的是( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,内角的对边分别是,且满足:.

)求角的大小;

(Ⅱ)若,求的最大值.

查看答案和解析>>

同步练习册答案