精英家教网 > 高中数学 > 题目详情
9.若2a=5b=m,且$\frac{1}{a}+\frac{1}{b}=2$,求m的值.

分析 利用指数式与对数式互化,求出关于m的方程,求解即可.

解答 解:2a=5b=m,则$\frac{1}{a}$=logm2,$\frac{1}{b}={log}_{m}5$,
因为$\frac{1}{a}+\frac{1}{b}=2$,
所以logm2+logm5=2,
∴2=logm10,
解得m=$\sqrt{10}$.

点评 本题考查对数运算法则的应用,函数的零点与方程根的关系,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知函数$f(x)=\frac{sin2x+cos2x+1}{2cosx}$
(Ⅰ)求函数f(x)的定义域
(Ⅱ)若$f({α+\frac{π}{4}})=\frac{{3\sqrt{2}}}{5}$,求cosα的值
(Ⅲ)在(Ⅱ)条件下,若α是第四象限角,求$cos({π-2α})+cos({2α-\frac{π}{2}})$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.$\root{6}{(a-b)^{6}}$(a<b)=b-a.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.f(x)=sin(x+θ),|θ|<$\frac{π}{2}$,函数图象向右平移$\frac{π}{3}$个单位后得到的函数为奇函数,则θ值等于(  )
A.$\frac{π}{2}$B.$\frac{π}{6}$C.$\frac{π}{3}$D.-$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知{an}是首项为1的等比数列,且a4=8,则数列$\left\{{\frac{1}{a_n}}\right\}$的前5项和为(  )
A.31B.$\frac{31}{16}$C.11D.$\frac{11}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若M(x,y)满足$2\sqrt{5}\sqrt{{{(x-2)}^2}+{{(y-1)}^2}}=|{2x+y-4}|$,则M的轨迹(  )
A.双曲线B.直线C.椭圆D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数$f(x+\frac{1}{2})$为奇函数,g(x)=f(x)+1,若${a_n}=g(\frac{n}{2016})$,则数列的前2015项之和为(  )
A.2016B.2015C.2014D.2013

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知直线l:$\left\{\begin{array}{l}{x=1+\sqrt{3}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t为参数),曲线C1:$\left\{\begin{array}{l}{x=2cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数).
(1)设l与C1相交于A,B两点,求|AB|;
(2)若把曲线C1上各点的横坐标压缩为原来的$\frac{1}{2}$,纵坐标压缩为原来的$\frac{{\sqrt{3}}}{2}$得到曲线C2,设点P是曲线C2上的一个动点,求它到直线l的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.(理)下列四个命题中真命题的序号是①③.
①若存在实数x,y,使$\overrightarrow p=x\overrightarrow a+y\overrightarrow b$,则$\overrightarrow P$与$\overrightarrow a,\overrightarrow b$共面;
②若$\overrightarrow P$与$\overrightarrow a,\overrightarrow b$共面,则存在实数x,y,使$\overrightarrow p=x\overrightarrow a+y\overrightarrow b$;
③若存在实数x,y,使$\overrightarrow{MP}=x\overrightarrow{MA}+y\overrightarrow{MB}$,则P,M,A,B共面;
④若P,M,A,B共面,则存在实数x,y,使$\overrightarrow{MP}=x\overrightarrow{MA}+y\overrightarrow{MB}$.

查看答案和解析>>

同步练习册答案