【题目】某企业生产A,B两种产品,根据市场调查与市场预测,知A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2.(注:所示图中的横坐标表示投资金额,单位:万元)
图1 图2
(1)分别将A,B两种产品的利润表示为投资的函数关系式;
(2)该企业已筹集10万元资金,并全部投入A,B两种产品的生产,问:怎样分配这10万元资金,才能使企业获得最大利润,最大利润为多少万元?
科目:高中数学 来源: 题型:
【题目】已知p:指数函数f(x)=(2a-6)x在R上是单调减函数;q:关于x的方程x2-3ax+2a2+1=0的两根均大于3,若p或q为真,p且q为假,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】罗源滨海新城建一座桥,两端的桥墩已建好,这两墩相距米,余下工程只需建两端桥墩之间的桥面和桥墩,经预测,一个桥墩的工程费用为32万元,距离为x米的相邻两墩之间的桥面工程费用为万元.假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素,记余下工程的费用为万元.
(1)试写出关于的函数关系式;
(2)当=96米,需新建多少个桥墩才能使余下工程的费用最小?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)当时,求函数在上的最大值;
(2)令,若在区间上为单调递增函数,求的取值范围;
(3)当时,函数的图象与轴交于两点且,又是的导函数.若正常数满足条件.证明: <0.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知的边所在直线的方程为,满足,点在边所在直线上且满足.
(1)求边所在直线的方程;
(2)求外接圆的方程;
(3)若动圆过点,且与的外接圆外切,求动圆的圆心的轨迹方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥中,底面是直角梯形,,,,侧面底面,且是以为底的等腰三角形.
(Ⅰ)证明:
(Ⅱ)若四棱锥的体积等于.问:是否存在过点的平面分别交,于点,使得平面平面?若存在,求出的面积;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左右焦点分别为,短轴两个端点为,且四边形是边长为2的正方形.
(1)求椭圆的方程;
(2)设是椭圆上一点,为椭圆长轴上一点,求的最大值与最小值;
(3)设是椭圆外的动点,满足,点是线段与该椭圆的交点,点在线段上,并且满足,,求点的轨迹方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com