精英家教网 > 高中数学 > 题目详情

【题目】某企业生产AB两种产品,根据市场调查与市场预测,知A产品的利润与投资成正比,其关系如图1B产品的利润与投资的算术平方根成正比,其关系如图2.(注:所示图中的横坐标表示投资金额,单位:万元)

1 2

1)分别将AB两种产品的利润表示为投资的函数关系式;

2)该企业已筹集10万元资金,并全部投入AB两种产品的生产,问:怎样分配这10万元资金,才能使企业获得最大利润,最大利润为多少万元?

【答案】见解析

【解析】(1)设投资为万元,A产品的利润为万元,产品的利润为万元,

由题意知

由图可知

从而.

2)设A产品投入万元,则B产品投入万元,设企业利润为万元.

,则,从而

时,,此时.

所以当A产品投入6万元,B产品投入4万元时,企业获得最大利润,为7万元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知p:指数函数f(x)=(2a-6)x在R上是单调减函数;q:关于x的方程x2-3ax+2a2+1=0的两根均大于3,若pq为真,pq为假,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】罗源滨海新城建一座桥,两端的桥墩已建好,这两墩相距米,余下工程只需建两端桥墩之间的桥面和桥墩,经预测,一个桥墩的工程费用为32万元,距离为x米的相邻两墩之间的桥面工程费用为万元.假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素,记余下工程的费用为万元.

(1)试写出关于的函数关系式;

(2)96,需新建多少个桥墩才能使余下工程的费用最小?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

()若函数的图像在处的切线不过第四象限且不过原点,求的取值范围;

()设,若上不单调且仅在处取得最大值,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求函数上的最大值;

(2)令,若在区间上为单调递增函数,求的取值范围;

(3)当时,函数的图象与轴交于两点,又的导函数.若正常数满足条件.证明: <0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设p:实数x满足,其中,命题实数满足

|x-3|≤1 .

(1)若为真,求实数的取值范围;

(2)若的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知的边所在直线的方程为满足,点边所在直线上且满足.

(1)求边所在直线的方程;

(2)求外接圆的方程;

(3)若动圆过点,且与的外接圆外切,求动圆的圆心的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面是直角梯形,,,侧面底面,是以为底的等腰三角形.

)证明:

)若四棱锥的体积等于.问:是否存在过点的平面分别交于点,使得平面平面?若存在,求出的面积;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左右焦点分别为,短轴两个端点为,且四边形是边长为2的正方形.

1)求椭圆的方程;

(2)设是椭圆上一点,为椭圆长轴上一点,求的最大值与最小值;

(3)设是椭圆外的动点,满足,点是线段与该椭圆的交点,点在线段上,并且满足,求点的轨迹方程.

查看答案和解析>>

同步练习册答案