精英家教网 > 高中数学 > 题目详情
10.过抛物线y2=4x的焦点F作圆C:x2+y2-8x+m=0的切线,切点为M、N,且|MN|=$\frac{4\sqrt{2}}{3}$.
(1)求实数m的值:
(2)若m>12,直线l经过点F,与抛物线交于点A、B,是否存在直线l,使AB为直径的圆与圆C外切,若存在,求出直线l的方程;若不存在,请说明则由.

分析 (1)利用等面积,可得$\sqrt{(16-m)(m-7)}$=$\frac{1}{2}×3×\frac{4\sqrt{2}}{3}$,即可求实数m的值:
(2)以AB为直径的圆与圆C外切有$\frac{|AB|}{2}$+1=|QC|,可得x0+2=$\sqrt{({x}_{0}-4)^{2}+{{y}_{0}}^{2}}$①,分类讨论,利用斜率相等,可得${{y}_{0}}^{2}$=2(x0-1)②,即可得出结论.

解答 解:(1)抛物线y2=4x的焦点F(1,0),圆的圆心为(4,0),圆的半径为$\sqrt{16-m}$,则
利用等面积,可得$\sqrt{(16-m)(m-7)}$=$\frac{1}{2}×3×\frac{4\sqrt{2}}{3}$,∴m=8或15;
(2)若m>12,则m=15,圆C:(x-4)2+y2=1,半径为1.
设A(x1,y1),B(x2,y2),AB的中点坐标为(x0,y0
由抛物线定义可知$\frac{|AB|}{2}$=x0+1,∴以AB为直径的圆与圆C外切有$\frac{|AB|}{2}$+1=|QC|,
∴x0+2=$\sqrt{({x}_{0}-4)^{2}+{{y}_{0}}^{2}}$①
当AB斜率不存在时,Q与F重合,x0=1,此时$\frac{|AB|}{2}$+1=|QC|,符合题意;
当AB斜率存在时,x0≠1,由$\left\{\begin{array}{l}{{{y}_{1}}^{2}=4{x}_{1}}\\{{{y}_{2}}^{2}=4{x}_{2}}\end{array}\right.$,可得kAB=$\frac{4}{{y}_{1}+{y}_{2}}$=$\frac{2}{{y}_{0}}$,
∵kAB=$\frac{{y}_{0}}{{x}_{0}-1}$,
∴$\frac{2}{{y}_{0}}$=$\frac{{y}_{0}}{{x}_{0}-1}$,
∴${{y}_{0}}^{2}$=2(x0-1)②,
联立①②,解得x0=1(矛盾),
综上所述,存在直线AB:x=1,符合条件.

点评 本题考查直线与圆的位置关系,考查抛物线的定义,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.设数列{an}的前n项和为Sn,且 Sn=n2-4n+4,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知{an}是一个公差大于0的等差数列,且满足a3a5=45,a2+a6=14
(1)求数列{an}的通项公式;
(2)若数列{bn}满足:$\frac{b_1}{2}+\frac{b_2}{2^2}+…+\frac{b_n}{2^n}={a_n}+{n^2}$,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.(1)${({\frac{1}{8}})^{-\frac{2}{3}}}-\root{4}{{{{({-3})}^4}}}+{({2\frac{1}{4}})^{\frac{1}{2}}}-{(1.5)^2}$
(2)${log_3}\sqrt{27}+lg25+lg4+{7^{{{log}_7}2}}+{(-9.8)^0}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设椭圆M:$\frac{y^2}{a^2}+\frac{x^2}{b^2}=1$(a>b>0)的离心率与双曲线x2-y2=1的离心率互为倒数,且椭圆的长轴长为4.
(1)求椭圆M的方程;
(2)若直线y=$\sqrt{2}$x+m交椭圆M于A,B两点,P(1,$\sqrt{2}$)为椭圆M上一点,求△PAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的实轴长为2,焦距为4,过右焦点F1作垂直于x轴的直线l,该双曲线的渐近线与直线l2所围成的三角形的面积记为S,则S的值为(  )
A.2$\sqrt{3}$B.$\sqrt{3}$C.2D.4$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设数列{an}的前n项和为Sn=$\frac{4}{3}$an-$\frac{{2}^{n+1}}{3}$+$\frac{2}{3}$,求an及Tn=$\sum_{k=1}^{n}\frac{{2}^{k}}{{S}_{k}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)=$\frac{1}{\sqrt{1-x}}$的定义域为M,g(x)=ln(1+x)的定义域为N,则M∩N=(-1,1);M∪N=R.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设圆C:x2+y2=5上一点P(a,$\sqrt{3a-5}$),则a=2.

查看答案和解析>>

同步练习册答案