【题目】下列关于棱锥、棱台的说法,其中不正确的是( )
A.棱台的侧面一定不会是平行四边形
B.棱锥的侧面只能是三角形
C.由四个面围成的封闭图形只能是三棱锥
D.棱锥被平面截成的两部分不可能都是棱锥
科目:高中数学 来源: 题型:
【题目】已知( +x2)2n的展开式中各项系数的和比(3x﹣1)n的展开式中二项式系数的和大992,求(2x﹣ )2n的展开式中:
(1)第10项
(2)常数项;
(3)系数的绝对值最大的项.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,抛物线C:x2=2py(p>0),其焦点为F,C上的一点M(4,m)满足|MF|=4.
(1)求抛物线C的标准方程;
(2)过点E(﹣1,0)作不经过原点的两条直线EA,EB分别与抛物线C和圆F:x2+(y﹣2)2=4相切于点A,B,试判断直线AB是否经过焦点F.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=x2ex﹣1+ax3+bx2 , 已知x=﹣2和x=1为f(x)的极值点.
(1)求a和b的值;
(2)讨论f(x)的单调性;
(3)设g(x)= x3﹣x2 , 试比较f(x)与g(x)的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数g(x)是奇函数f(x)(x∈R)的导函数,f(1)=0,当x>0时,xg(x)﹣f(x)<0,则使得f(x)<0成立的x的取值范围是( )
A.(﹣∞,﹣1)∪(0,1)
B.(0,1)∪(1,+∞)
C.(﹣∞,﹣1)∪(﹣1,0)
D.(﹣1,0)∪(1,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆 的离心率 ,连接椭圆的四个顶点得到的菱形的面积为4.
(1)求椭圆的方程;
(2)设直线l与椭圆相交于不同的两点A,B,已知点A的坐标为(﹣a,0),点Q(0,y0)在线段AB的垂直平分线上,且 ,求y0的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)的定义域[﹣1,5],部分对应值如表,f(x)的导函数y=f′(x)的图象如图所示
x | ﹣1 | 0 | 2 | 4 | 5 |
F(x) | 1 | 2 | 1.5 | 2 | 1 |
下列关于函数f(x)的命题;
①函数f(x)的值域为[1,2];
②函数f(x)在[0,2]上是减函数
③如果当x∈[﹣1,t]时,f(x)的最大值是2,那么t的最大值为4;
④当1<a<2时,函数y=f(x)﹣a最多有4个零点.
其中正确命题的序号是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(n)=1+ + + +…+ ,g(n)= ﹣ ,n∈N* .
(1)当n=1,2,3时,试比较f(n)与g(n)的大小关系;
(2)猜想f(n)与g(n)的大小关系,并给出证明.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 有两个极值点x1 , x2 , 且x1<x2 , 记点M(x1 , f(x1)),N(x2 , f(x2)).
(Ⅰ)求直线MN的方程;
(Ⅱ)证明:线段MN与曲线y=f(x)有且只有一个异于M、N的公共点.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com