精英家教网 > 高中数学 > 题目详情
15.若a,b,c∈R,且abc≠0,已知P:a,b,c成等比数列;Q:b=$\sqrt{ac}$,则P是Q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

分析 由P:b2=ac,即b=$±\sqrt{ac}$;Q:b=$\sqrt{ac}$,即可判断出结论.

解答 解:∵abc≠0,P:a,b,c成等比数列,可得:b2=ac,于是$b=±\sqrt{ac}$;
Q:b=$\sqrt{ac}$,
可得:Q⇒P,反之不成立.
∴P是Q的必要不充分条件.
故选:B.

点评 本题考查了等比数列的性质、充要条件的判定方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.定长为4的线段MN的两端点在抛物线y2=x上移动,设点P为线段MN的中点,则P到y轴距离的最小值为$\frac{7}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知圆x2+y2=r2在曲线|x|+|y|=4的内部(含边界),则半径r的范围是(0,2$\sqrt{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知二次函数y=f(x)的图象经过坐标原点,其导函数为f′(x)=6x-2.数列{an}的前n项和为Sn,点(n,Sn)(n∈N*)均在函数y=f(x)的图象上.
(1)求数列{an}的通项公式;
(2)设${b_n}=\frac{3}{{{a_n}{a_{n+1}}}}$,Tn是数列{bn}的前n项和,求使得${T_n}<\frac{m}{2016}$对所有的(n∈N*)都成立的最小正整数m.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设集合U=R,A={x|2≤x<4},B={x|x≥3}.求:A∩B,(∁UA)∪B.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.(1)求值:0.064${\;}^{-\frac{1}{3}}$-(-$\frac{1}{8}$)0+16${\;}^{\frac{3}{4}}$+0.25${\;}^{\frac{1}{2}}$+2log36-log312
(2)化简:$\frac{{tan(π+a)cos(2π+a)sin(a-\frac{3π}{2})}}{cos(-a-3π)sin(-3π-a)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.集合P={x|x2-3x+2=0},Q={x|mx-1=0},若P?Q,则实数m的值是{0,$\frac{1}{2}$,1}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知△ABC的顶点A(1,3),M(2,2)是AB的中点,BC边上的高AD所在直线方程为4x+y-7=0,AC边上的高BE所在直线方程为2x+3y-9=0.
求:(1)求顶点B的坐标及边BC所在的直线方程;
(2)求AB边上的中线CM所在直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.计算下列各题:
$(1){0.064^{-\frac{1}{3}}}-{(-\frac{7}{8})^0}+{[{(-2)^3}]^{-\frac{4}{3}}}+{16^{-0.75}}+{0.01^{\frac{1}{2}}}$
(2)2lg$\frac{5}{3}-lg\frac{7}{4}+2lg3+\frac{1}{2}$lg49.

查看答案和解析>>

同步练习册答案