精英家教网 > 高中数学 > 题目详情
在△ABC中,若sin2A=-
1
4
,则sinA-cosA的值为(  )
分析:先利用二倍角的正弦函数公式把已知条件化简得到2sinAcosA的值,并根据其值得到A的范围,进而得到sinA-cosA的符号,然后把所求的式子平方后,利用同角三角函数间的基本关系化简后,将2sinAcosA的值代入即可求出值,根据sinA-cosA的符号,开方即可得到sinA-cosA的值.
解答:解:因为sin2A=2sinAcosA=-
1
4
<0
得到cosA<0,所以A∈(
π
2
,π),sinA-cosA>0,
则(cosA-sinA)2=1-2sinAcosA=1+
1
4
=
5
4

所以sinA-cosA=
5
2

故选:A.
点评:此题考查学生灵活运用二倍角正弦函数公式及同角三角函数间的基本关系化简求值,是一道中档题.学生做题时应注意判断所求式子的符号.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出命题:
①函数y=2sinx-cosx的值域是[-2,1];
②函数y=sinπxcosπx是周期为2的奇函数;
x=-
3
4
π
是函数y=sin(x+
π
4
)
的一条对称轴;
④若sin2α<0,cosα-sinα<0,则α一定为第二象限角;
⑤在△ABC中,若A>B则sinA>sinB.
其中正确命题的序号为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列结论:
①已知命题p:?x∈R,tanx=1;命题q:?x∈R,x2-x+1>0.则命题“p∧?q”是假命题;
②函数y=
|x|
x2+1
的最小值为
1
2
且它的图象关于y轴对称;
③“a>b”是“2a>2b”的充分不必要条件;
④在△ABC中,若sinAcosB=sinC,则△ABC中是直角三角形.
⑤若tanθ=2,则sin2θ=
4
5

其中正确命题的序号为
①④⑤
①④⑤
.(把你认为正确的命题序号填在横线处)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知下列四个命题:
①若tanθ=2,则sin2θ=
4
5

②函数f(x)=lg(x+
1+x2
)
是奇函数;
③“a>b”是“2a>2b”的充分不必要条件;
④在△ABC中,若sinAcosB=sinC,则△ABC中是直角三角形.
其中所有真命题的序号是
①②④
①②④

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,4sinB•sin2
π
4
+
π
2
)+cos2B=1+
3

(1)求角B的大小;(2)若a=4,cosC=sinB,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin2
x
2
+
π
12
)+
3
sin(
x
2
+
π
12
)cos(
x
2
+
π
12
)一
1
2

(1)在△ABC中,若sinC=2sinA,B为锐角且有f(B)=
3
2
,求角A,B,C;
(2)若f(x)(x>0)的图象与直线y=
1
2
交点的横坐标由小到大依次是x1,x2,…,xn,求数列{xn}的前2n项和,n∈N*

查看答案和解析>>

同步练习册答案