精英家教网 > 高中数学 > 题目详情

【题目】图中,小方格是边长为1的正方形,图中粗线画出的是某几何体的三视图,且该几何体的顶点都在同一球面上,则该几何体的外接球的表面积为(  )

A.32π
B.48π
C.50π
D.64π

【答案】C
【解析】解:由三视图可知该几何体是一个底面是矩形的四棱锥,

记该几何体的外接球球心为O,半径R=OA,

则PA= × = ,OP=R﹣

所以OA2=OP2+AP2

又因为OP2= =

所以R2= + ,解得:R=

所以所求面积S=4π×R2=4π× =50π,

所以答案是:C.

【考点精析】关于本题考查的由三视图求面积、体积,需要了解求体积的关键是求出底面积和高;求全面积的关键是求出各个侧面的面积才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知等比数列{an}的前n项和为Sn , 且 (a∈N+).
(1)求a的值及数列{an}的通项公式;
(2)设 ,求{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】集合L={l|l与直线y=x相交,且以交点的横坐标为斜率}.若直线l′∈L,点P(﹣1,2)到直线l′的最短距离为r,则以点P为圆心,r为半径的圆的标准方程为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某同学为研究函数 的性质,构造了如图所示的两个边长为1的正方形ABCD和BEFC,点P是边BC上的一个动点,设CP=x,则AP+PF=f(x).请你参考这些信息,推知函数f(x)的值域是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx+x2
(Ⅰ)若函数g(x)=f(x)﹣ax在其定义域内为增函数,求实数a的取值范围;
(Ⅱ)在(Ⅰ)的条件下,若a>1,h(x)=e3x﹣3aexx∈[0,ln2],求h(x)的极小值;
(Ⅲ)设F(x)=2f(x)﹣3x2﹣kx(k∈R),若函数F(x)存在两个零点m,n(0<m<n),且2x0=m+n.问:函数F(x)在点(x0 , F(x0))处的切线能否平行于x轴?若能,求出该切线方程;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知m>1,直线l:x﹣my﹣ =0,椭圆C: +y2=1,F1、F2分别为椭圆C的左、右焦点.
(Ⅰ)当直线l过右焦点F2时,求直线l的方程;
(Ⅱ)设直线l与椭圆C交于A、B两点,△AF1F2 , △BF1F2的重心分别为G、H.若原点O在以线段GH为直径的圆内,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}是公差为2的等差数列,数列{bn}满足 ,若n∈N*时,anbn+1﹣bn+1=nbn
(Ⅰ)求{bn}的通项公式;
(Ⅱ)设 ,求{Cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=aex﹣2x﹣2a,且a∈[1,2],设函数f(x)在区间[0,ln2]上的最小值为m,则m的取值范围是(  )
A.[﹣2,﹣2ln2]
B.[﹣2,﹣ ]
C.[﹣2ln2,﹣1]
D.[﹣1,﹣ ]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx﹣kx+k(k∈R).
(Ⅰ)求f(x)在[1,2]上的最小值;
(Ⅱ)若 ,对x∈(﹣1,1)恒成立,求正数a的最大值.

查看答案和解析>>

同步练习册答案