分析 (1)求出函数的导数,根据f′(-1)=0,求出a的值,解关于导函数的不等式,求出函数的单调区间,从而求出函数的最值即可;
(2)根据f(x)在(-∞,-2]和[3,+∞)上都递减,得到关于a的不等式组,解出即可.
解答 解:f′(x)=-3x2+6ax+2a+7.
(1)f′(-1)=-4a+4=0,所以a=1.…(2分)
f′(x)=-3x2+6x+9=-3(x-3)(x+1),
当-2≤x<-1时,f′(x)<0,f(x)单调递减;
当-1<x≤2时,f′(x)>0,f(x)单调递增,
又f(-2)=2,f(-1)=-5,f(2)=22,
故f(x)在[-2,2]上的最大值为22,最小值为-5.…(6分)
(2)由题意得x∈(-∞,-2]∪[3,+∞)时,f′(x)≤0成立,…(7分)
由f′(x)=0可知,判别式△>0,所以
$\left\{\begin{array}{l}{-2≤a≤3}\\{f′(-2)≤0}\\{f′(3)≤0}\end{array}\right.$,解得:-$\frac{1}{2}$≤a≤1.
所以a的取值范围为[-$\frac{1}{2}$,1].…(12分)
点评 本题考查了函数的单调性、最值问题,考查导数的应用以及二次函数的性质,是一道中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | ?n∈N,3n<n2+1 | B. | $?{n_0}∈N,{3^{n_0}}<n_0^2+1$ | ||
C. | ?n∈N,3n≤n2+1 | D. | $?{n_0}∈N,{3^{n_0}}≥n_0^2+1$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | x=-3或4x+3y-15=0 | B. | 4x-3y+15=0 | ||
C. | 4x+3y-15=0 | D. | x=-3或4x-3y+15=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | BD⊥平面ACC1A1 | |
B. | AC⊥BD | |
C. | A1B∥平面CDD1C1 | |
D. | 该正方体的外接球和内接球的半径之比为2:1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 圆 | B. | 椭圆 | C. | 双曲线一支 | D. | 抛物线 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com