精英家教网 > 高中数学 > 题目详情
11.已知a为实数,f(x)=-x3+3ax2+(2a+7)x.
(1)若f'(-1)=0,求f(x)在[-2,2]上的最大值和最小值;
(2)若f(x)在(-∞,-2]和[3,+∞)上都递减,求a的取值范围.

分析 (1)求出函数的导数,根据f′(-1)=0,求出a的值,解关于导函数的不等式,求出函数的单调区间,从而求出函数的最值即可;
(2)根据f(x)在(-∞,-2]和[3,+∞)上都递减,得到关于a的不等式组,解出即可.

解答 解:f′(x)=-3x2+6ax+2a+7.
(1)f′(-1)=-4a+4=0,所以a=1.…(2分)
f′(x)=-3x2+6x+9=-3(x-3)(x+1),
当-2≤x<-1时,f′(x)<0,f(x)单调递减;
当-1<x≤2时,f′(x)>0,f(x)单调递增,
又f(-2)=2,f(-1)=-5,f(2)=22,
故f(x)在[-2,2]上的最大值为22,最小值为-5.…(6分)
(2)由题意得x∈(-∞,-2]∪[3,+∞)时,f′(x)≤0成立,…(7分)
由f′(x)=0可知,判别式△>0,所以
$\left\{\begin{array}{l}{-2≤a≤3}\\{f′(-2)≤0}\\{f′(3)≤0}\end{array}\right.$,解得:-$\frac{1}{2}$≤a≤1.
所以a的取值范围为[-$\frac{1}{2}$,1].…(12分)

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及二次函数的性质,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知p:-2≤x≤10,q:x2-2x+1-m2≤0(m>0),若¬p是¬q的必要非充分条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列{an}满足a2=$\frac{7}{2}$,且an+1=3an-1(n∈N*).
(1)求数列{an}的通项公式以及数列{an}的前n项和Sn的表达式;
(2)若不等式$\frac{{a}_{n}+\frac{1}{2}}{{a}_{n+1}-\frac{3}{2}}$≤m对?n∈N*恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设命题 p:?n∈N,3n≥n2+1,则¬p为(  )
A.?n∈N,3n<n2+1B.$?{n_0}∈N,{3^{n_0}}<n_0^2+1$
C.?n∈N,3n≤n2+1D.$?{n_0}∈N,{3^{n_0}}≥n_0^2+1$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.抛物线 M:y2=2px(p>0)与椭圆 $N:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$有相同的焦点F,抛物线M与 椭圆N交于A,B,若F,A,B共线,则椭圆N的离心率等于$\sqrt{2}$-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若直线l过点(-3,1)且被圆x2+y2=25截得的弦长为8,则直线l的方程是(  )
A.x=-3或4x+3y-15=0B.4x-3y+15=0
C.4x+3y-15=0D.x=-3或4x-3y+15=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.以下说法正确的有②④
①若p:?x0∈R,x${\;}_{0}^{2}$-x0>0,则¬p:?x∈R,x2-x>0
②已知m,n是两条不同的直线,α,β是两个不同是平面,若m⊥α,m∥n,n∥β,则α⊥β
③“m>2”是“?k∈R,y=kx+2k与x2+y2+mx=0都有公共点”的充分不必要条件
④在△ABC中,AB=AC=3,BC=2,p是△ABC内部的一点,若$\frac{{S}_{△PAB}}{\overrightarrow{PA}•\overrightarrow{PB}}$=$\frac{{S}_{△PBC}}{\overrightarrow{PB}•\overrightarrow{PC}}$=$\frac{{S}_{△PAC}}{\overrightarrow{PA}•\overrightarrow{PC}}$(S△PAB,S△PBC,S△PAC表示相应三角形的面积),则PA+PB+PC=2$\sqrt{2}$+$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图,关于正方体ABCD-A1B1C1D1,下面结论错误的是(  )
A.BD⊥平面ACC1A1
B.AC⊥BD
C.A1B∥平面CDD1C1
D.该正方体的外接球和内接球的半径之比为2:1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知两个圆O1和O2,它们的半径分别是2和4,且|O1O2|=8,若动圆M与圆O1内切,又与O2外切,则动圆圆心M的轨迹方程是(  )
A.B.椭圆C.双曲线一支D.抛物线

查看答案和解析>>

同步练习册答案