精英家教网 > 高中数学 > 题目详情
5.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别F1,F2,O为坐标原点,P是双曲线在第一象限上的点,直线PO,PF2分别交双曲线C左,右支于另一点,M,N.若|PF1|=2|PF2|,且∠MF2N=60°,则双曲线C的离心率为$\sqrt{3}$.

分析 由题意,|PF1|=2|PF2|,|PF1|-|PF2|=2a,可得|PF1|=4a,|PF2|=2a,由∠MF2N=60°,可得∠F1PF2=60°,由余弦定理可得4c2=16a2+4a2-2•4a•2a•cos60°,即可求出双曲线C的离心率.

解答 解:由题意,|PF1|=2|PF2|,|PF1|-|PF2|=2a,
∴|PF1|=4a,|PF2|=2a,
∵∠MF2N=60°,∴∠F1PF2=60°,
由余弦定理可得4c2=16a2+4a2-2•4a•2a•cos60°,
∴c=$\sqrt{3}$a,
∴e=$\frac{c}{a}$=$\sqrt{3}$.
故答案为:$\sqrt{3}$.

点评 本题考查双曲线C的离心率,考查余弦定理,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.定义在R上的偶函数f(x)在[0,+∞)上的增函数,若f(1)=0,则f(log2x)>0的解集是(0,$\frac{1}{2}$)∪(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列函数中为偶函数的是(  )
A.y=x2cosxB.y=x2sinxC.y=2-xD.y=|lnx|

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.双曲线C:$\frac{x^2}{16}-\frac{y^2}{4}=1$的渐近线方程为$y=±\frac{1}{2}x$;设F1,F2为双曲线C的左、右焦点,P为C上一点,且|PF1|=4,则|PF2|=12.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数$f(x)=2x+\frac{1}{x^2}$,直线l:y=kx-1.
(Ⅰ)求函数f(x)的极值;
(Ⅱ)求证:对于任意k∈R,直线l都不是曲线y=f(x)的切线;
(Ⅲ)试确定曲线y=f(x)与直线l的交点个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.抛物线y2=8x上一点P(m,n),F为抛物线的焦点,若|PF|=5,则m=3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知F1、F2是双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的两个焦点,P是双曲线C上一点,且$\overrightarrow{PF_1}$⊥$\overrightarrow{PF_2}$,若△PF1F2的面积为16,则b=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某市大型国有企业按照中央“调结构、保增长、促发展”的指示精神,计划投资甲乙两个项目,前期调研获悉,甲项目每投资百万元需要配套电能2万千瓦,增加产值200万元;乙项目每投资百万元需要配套电能4万千瓦,增加产值300万元,根据该企业目前资金储备状况仅能最多投资3000万元,配套电能100万千瓦.
(Ⅰ)假设企业在甲、乙两个项目投资额分别为x,y(单位:百万元),请写出x,y所满足的约束条件,并在所给出的坐标系画出可行域;
(Ⅱ)计算如何安排对甲、乙两个项目投资额,才能使产值有最大的增加值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知向量$\overrightarrow{a}$=(cos$\frac{3}{2}$x,sin$\frac{3}{2}$x),$\overrightarrow{b}$=(cos$\frac{x}{2}$,-sin$\frac{x}{2}$),x∈[0,$\frac{π}{2}$].
(Ⅰ)求$\overrightarrow{a}$•$\overrightarrow{b}$及|$\overrightarrow{a}$+$\overrightarrow{b}$|;
(Ⅱ)若f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$-2t|$\overrightarrow{a}$+$\overrightarrow{b}$|的最小值为g(t),求g(t).

查看答案和解析>>

同步练习册答案