精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

在极坐标系中,曲线,以极点为原点,极轴为轴的正半轴建立平面直角坐标系,过点的直线的参数方程为为参数),点在直线上,且.

(Ⅰ)求点的极坐标;

(Ⅱ)若点是曲线上一动点,求点到直线的距离的最小值.

【答案】(Ⅰ);(Ⅱ)

【解析】

试题分析】(1)依据直线参数方程中参数的几何意义求出,进而求出点的坐标为.(2)先将曲线方程化为,即,再分别求出时,曲线是圆心为,半径为1的圆,又直线的方程为,求得点到直线的距离最小值为;当,则曲线是以为圆心,半径为2的圆,进而求得点到直线的距离最小值为,最后求出点到直线的距离的最小值是.

解:(Ⅰ)由直线参数几何意义可知,

的坐标为.

(Ⅱ)曲线方程为

,则曲线是圆心为,半径为1的圆,

又直线的方程为

∴点到直线的距离最小值为

,则曲线是以为圆心,半径为2的圆,

∴点到直线的距离最小值为

综上,所求最小值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线Cy22pxp0)的准线方程为x=﹣1

1)求抛物线C的方程;

2)过抛物线C的焦点作直线l,交抛物线CAB两点,若线段AB中点的横坐标为6,求|AB|

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市随机抽取部分企业调查年上缴税收情况(单位:万元),将所得数据绘制成频率分布直方图(如图),年上缴税收范围是 ,样本数据分组为

(Ⅰ)求直方图中的值;

(Ⅱ)如果年上缴税收不少于万元的企业可申请政策优惠,若共抽取企业个,试估计有多少企业可以申请政策优惠;

(Ⅲ)从企业中任选个,这个企业年上缴税收少于万元的个数记为 ,求的分布列和数学期望.(以直方图中的频率作为概率)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为自然对数的底数).

(1)若处的切线过点,求实数的值;

(2)当时,恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为单位正方体,黑白两只蚂蚁从点出发沿棱向前爬行,每走完一条棱称为走完一段,白蚂蚁爬行的路线是,黑蚂蚁爬行的路线是,它们都遵循如下规则:所爬行的第段与第段所在直线必须是异面直线(其中是自然数),设黑、白蚂蚁都走完2012段后各停止在正方体的某个顶点处,这时黑、白两只蚂蚁的距离是______________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知多面体中,均为正三角形,平面平面.

(Ⅰ)求证:平面

(Ⅱ)若,求该多面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)判断函数的单调性;

(2)当上的最小值是时,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角梯形PBCD中, APD的中点,如下左图。将沿AB折到的位置,使,点ESD上,且,如下图。

1)求证: 平面ABCD

2)求二面角E—AC—D的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数是定义域为R的奇函数.

k值;

,试判断函数单调性并求使不等式恒成立的t的取值范围;

,且上的最小值为,求m的值.

查看答案和解析>>

同步练习册答案