精英家教网 > 高中数学 > 题目详情
以下四个关于圆锥曲线的命题中:
①设A、B为两个定点,k为非零常数,|
PA
|-|
PB
|=k
,则动点P的轨迹为双曲线;
②平面内到两定点距离之和等于常数的点的轨迹是椭圆
③若方程
x2
4-t
+
y2
t-1
=1
表示焦点在x轴上的椭圆,则1<t<
5
2

④双曲线
x2
25
-
y2
9
=1与椭圆
x2
35
+y2=1
有相同的焦点.
其中真命题的序号为
③、④
③、④
(写出所有真命题的序号)
分析:①不正确.若动点P的轨迹为双曲线,则|k|要小于A、B为两个定点间的距离;②不正确,若平面内到两定点距离之和等于常数,常数为大于两个点的距离;③正确,若方程
x2
4-t
+
y2
t-1
=1
表示焦点在x轴上的椭圆,则4-t>t-1>0,④正确,焦点在x轴上,焦点坐标为(±
34
,0).
解答:解:①不正确.若动点P的轨迹为双曲线,则|k|要小于A、B为两个定点间的距离.当|k|大于A、B为两个定点间的距离时动点P的轨迹不是双曲线.
②不正确,若平面内到两定点距离之和等于常数,常数为两个点的距离的轨迹是两点的垂直平方线,而不是椭圆;
③正确,若方程
x2
4-t
+
y2
t-1
=1
表示焦点在x轴上的椭圆,则4-t>t-1>0,解得1<t<
5
2

④正确,双曲线
x2
25
-
y2
9
=1与椭圆
x2
35
+y2=1
有相同的焦点,焦点在x轴上,焦点坐标为(±
34
,0);
故答案为:③、④
点评:本题主要考查了圆锥曲线的共同特征,同时考查了椭圆与双曲线的性质,考查的知识点较多,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

以下四个关于圆锥曲线的命题中
①设A、B为两个定点,k为非零常数,|
PA
|-|
PB
|=k,则动点P的轨迹为双曲线;
②设定圆C上一定点A作圆的动点弦AB,O为坐标原点,若
OP
=
1
2
OA
+
OB
),则动点P的轨迹为椭圆;
③方程2x2-5x+2=0的两根可分别作为椭圆和双曲线的离心率;
④双曲线
x2
25
-
y2
9
=1与椭圆
x2
35
+y2=1有相同的焦点.
其中真命题的序号为
 
(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

以下四个关于圆锥曲线的命题中:
①设A、B为两个定点,k为非零常数,|
PA
|-|
PB
|=k
,则动点P的轨迹为双曲线;
②以定点A为焦点,定直线l为准线的椭圆(A不在l上)有无数多个;
③方程2x2-5x+2=0的两根可分别作为椭圆和双曲线的离心率;
④过原点O任做一直线,若与抛物线y2=3x,y2=7x分别交于A、B两点,则
OA
OB
为定值.
其中真命题的序号为
 
(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

以下四个关于圆锥曲线的命题中:
①设A、B为两个定点,k为正常数,|
PA
|+|
PB
|=k
,则动点P的轨迹为椭圆;
②双曲线
x2
25
-
y2
9
=1
与椭圆
x2
35
+y2=1
有相同的焦点;
③方程2x2-5x+2=0的两根可分别作为椭圆和双曲线的离心率,则0<a<3;
④和定点A(5,0)及定直线l:x=
25
4
的距离之比为
5
4
的点的轨迹方程为
x2
16
-
y2
9
=1

其中真命题的序号为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

以下四个关于圆锥曲线的命题中:
①设A、B为两个定点,k为非零常数,|
PA
|-|
PB
|=k
,则动点P的轨迹为双曲线;
②过定圆C上一定点A作圆的动点弦AB,O为坐标原点,若
OP
=
1
2
(
OA
+
OB
)
,则动点P的轨迹为椭圆;
③方程2x2-5x+2=0的两根可分别作为椭圆和双曲线的离心率;
④双曲线
x2
35
-y2=1
和椭圆
x2
25
+
y2
9
=1
有相同的焦点.
其中真命题的序号为
(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

以下四个关于圆锥曲线的命题中:
①双曲线
x2
16
-
y2
9
=1
与椭圆
x2
49
+
y2
24
=1
有相同的焦点;
②在平面内,设A、B为两个定点,P为动点,且|PA|+|PB|=k,其中常数k为正实数,则动点P的轨迹为椭圆;
③方程2x2-3x+1=0的两根可分别作为椭圆和双曲线的离心率;
④过双曲线x2-
y2
2
=1
的右焦点F作直线l交双曲线于A、B两点,若|AB|=4,则这样的直线l有且仅有3条.
其中真命题的序号为
①④
①④
(写出所有真命题的序号).

查看答案和解析>>

同步练习册答案