精英家教网 > 高中数学 > 题目详情
8.直线过(-1,3)且在x,y轴上的截距的绝对值相等,则直线方程为3x+y=0、x-y+4=0,或x+y-2=0.

分析 当直线经过原点时,斜率为-3,可得要求的直线方程.当直线不经过原点时,设要求的直线方程为x±y=k,再把点(-1,3)代入求得k的值,可得要求的直线方程,综合可得结论.

解答 解:当直线经过原点时,斜率为 $\frac{3-0}{-1-0}$=-3,要求的直线方程为y=-3x,即3x+y=0.
当直线不经过原点时,设要求的直线方程为x±y=k,再把点(-1,3)代入可得-1-3=k,或-1+3=k,
求得k=-4,或k=2,故要求的直线方程为x-y+4=0,或x+y-2=0.
综上可得,要求的直线方程为 3x+y=0、x-y+4=0,或x+y-2=0,
故答案为:3x+y=0、x-y+4=0,或x+y-2=0.

点评 本题主要考查求直线的方程,体现了分类讨论的数学思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知双曲线Γ:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右顶点为A,与x轴平行的直线交Γ于B,C两点,记$\overrightarrow{AB}$•$\overrightarrow{AC}$=m,若Γ的离心率为$\sqrt{2}$,则m的取值的集合是{0}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知向量$\overrightarrow a=({2,-1}),\overrightarrow b=({-1,m}),\overrightarrow c=({1,-2})$,若$({\overrightarrow a+\overrightarrow b})∥\overrightarrow c$,则实数m=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知集合A={a|关于x的方程$\frac{x+a}{{{x^2}-1}}=1$有唯一实数解,a∈R},用列举法表示集合A=$\left\{{-1,1,-\frac{5}{4}}\right\}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若$\overrightarrow{a}$=(3,-4),$\overrightarrow{a}$∥$\overrightarrow{b}$,且|$\overrightarrow{b}$|=15,则$\overrightarrow{a}$=(9,-12),或(-9,12).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若$\frac{1}{a}<\frac{1}{b}<0$,有下面四个不等式:①|a|>|b|;②a<b;③a+b<ab,④a3>b3,正确的不等式的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若数列{an}的前n项和Sn=4n2-5,则通项an=$\left\{\begin{array}{l}{-1,n=1}\\{8n-4,n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若函数f(x)=ax2+b|x|+c(a≠0)在定义域R上有四个单调区间,则实数a,b,c应满足的条件为a,b异号.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数$f(x)=\left\{{\begin{array}{l}{(1-a)x+3a,x<e}\\{lnx,x≥e}\end{array}}\right.$(e为自然对数的底)的值域为R,则实数a的取值范围是(  )
A.$[\frac{e}{e-3},1]$B.$[\frac{e}{e-3},1)$C.$[\frac{1-e}{3-e},1]$D.$[\frac{1-e}{3-e},1)$

查看答案和解析>>

同步练习册答案