精英家教网 > 高中数学 > 题目详情
已知函数f1(x)=lg(-x-1)的定义域为M,函数f2(x)=lg(x-3)的定义域为N,A=N∪M,函数g(x)=2x-a(x≤2)的值域为B.
(1)求A、B;
(2)若函数A∩B=B,求实数a的取值范围.
考点:对数函数图象与性质的综合应用
专题:函数的性质及应用
分析:(1)求对数函数的定义域可得M、N,从而求得 A=N∪M.
(2)由题意可得B⊆A,再分B=∅、B≠∅两种情况,分别求得a的范围,再取并集,即得所求.
解答: 解:(1)由题意可得M={x|-x-1>0}={x|x<-1},N={x|x-3>0}={x|x>3},
∴A=N∪M={x|x<-1,或x>3}.
由于x≤2,可得2x∈(0,4],故函数g(x)=2x-a(x≤2)的值域为B=(-a,4-a].
(2)若函数A∩B=B,则B⊆A,∴B=∅,或 B≠∅.
当B=∅时,-a≥4-a,a无解.
当B≠∅,
-a<4-a
4-a<-1
,或
-a<4-a
a≥3
,求得a>5,或 a≥3,
综合可得,a≥3.
点评:本题主要考查对数函数的图象和性质综合应用,体现了转化、分类讨论的数学思想,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若不等式
2
x-1
≥|a2-a|对x∈(1,2]恒成立,则实数a的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和为Sn,若对任意n∈N*,都有Sn=3an-5n.
(1)求数列{an}的首项;
(2)若数列{an+λ}是等比数列,试求出实数λ的值,并写出数列{an}的通项公式;
(3)数列{bn}满足bn=
9n+4
an+5
,是否存在m,对任意n∈N*使得bn≤bm成立?如果存在,求出正整数m的值,如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

若直线a,b同时和第三条直线垂直,则直线a,b的位置关系是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2
x-1
,若|f(x)|≥
1
5
|a2-a|对于任意x∈[-4,-1]恒成立,则实数a的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线
x2
a2
-
y2
b2
=1的左右准线l1,l2将线段F1F2三等分,F1,F2分别为双曲线的左右焦点,则双曲线的渐近线方程为(  )
A、x±
2
y=0
B、y±
2
x=0
C、x±
3
y=0
D、y±
3
x=0

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,割线PBC经过圆心O,OB=PB=1,又PED交圆O于E,D,且DE=
4
7
7
,则△OPD的面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C1
x2
a2
-
y2
b2
=1(a>0,b>0)
与抛物线C2:y2=2px(p>0)有相同焦点,若双曲线C1与抛物线C2的一个公共点为P,且点P到抛物线的准线的距离为p,则双曲线的离心率为(  )
A、
2
+1
B、
2
C、2
D、2+
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知锐角在△ABC中,内角A,B,C的对边分别为a,b,c,满足
a+b
cosA+cosB
=
c
cosC

(1)求证:角A,C,B成等差数列;
(2)若△ABC的面积S△ABC=
3
,求△ABC周长的最小值.

查看答案和解析>>

同步练习册答案