精英家教网 > 高中数学 > 题目详情
9.已知抛物线x2=4y的集点为F,准线为l,P为抛物线上一点,过P作PA⊥l于点A,当∠AFO=30°(O为坐标原点)时,|PF|=$\frac{4}{3}$.

分析 由抛物线x2=4y,可得焦点F(0,1),准线l的方程为:y=-1.由∠AFO=30°,可得xA=$\frac{2\sqrt{3}}{3}$.由于PA⊥l,可得xP=$\frac{2\sqrt{3}}{3}$,yP=$\frac{1}{3}$,再利用|PF|=|PA|=yP+1即可得出.

解答 解:由抛物线x2=4y,可得焦点F(0,1),准线l的方程为:y=-1.
∵∠AFO=30°,∴xA=$\frac{2\sqrt{3}}{3}$.
∵PA⊥l,
∴xP=$\frac{2\sqrt{3}}{3}$,yP=$\frac{1}{3}$,
∴|PF|=|PA|=yP+1=$\frac{4}{3}$.
故答案为:$\frac{4}{3}$.

点评 本题考查了抛物线的定义标准方程及其性质、直线与抛物线相交问题转化为方程联立,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.顶点原点,焦点在x轴上且通径为8的抛物线方程为y2=±8x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知直线l的倾斜角是120°,则这条直线的一个法向量为(  )
A.(1,$\sqrt{3}$)B.(1,-$\sqrt{3}$)C.($\sqrt{3}$,1)D.(-$\sqrt{3}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知tan(α+β)=$\frac{3}{4}$,tan(β-$\frac{π}{4}$)=$\frac{1}{4}$,那么tan(α+$\frac{π}{4}$)=(  )
A.$\frac{16}{19}$B.$\frac{16}{13}$C.$\frac{13}{16}$D.$\frac{8}{19}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为120°,若$\overrightarrow{a}+k\overrightarrow{b}$与$\overrightarrow{b}$的夹角为钝角,则实数k的取值范围是(-∞,$\frac{1}{4}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数y=sin(2x+$\frac{π}{6}$)sin(2x+$\frac{2π}{3}$)的最小正周期为(  )
A.$\frac{π}{2}$B.$\frac{π}{4}$C.D.π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列{an}的前n项和Sn=-$\frac{1}{2}$n2+kn(其中k∈N+),且Sn的最大值为8.
(1)确定常数k,求an
(2)求数列bn=an+2n的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知点A(1,2),B(4,-2),则线段AB的长度为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知点C(1,0),点A、B是⊙O:x2+y2=9上任意两点,且满足$\overrightarrow{AC}$•$\overrightarrow{BC}$=0,点P为弦AB的中点,则点P的轨迹方程为x2-x+y2=4.

查看答案和解析>>

同步练习册答案