精英家教网 > 高中数学 > 题目详情

已知函数数学公式.若函数的定义域和值域都是[1,a](a>1),求a的值.

解:由已知中函数
我们可得函数的顶点为(1,1)
故函数在区间[1,a]上为增函数
又∵函数的定义域和值域都是[1,a]

解得:a=3,或a=1(舍去).
故a=3
分析:由已知中函数的解析式,我们可以判断出函数在区间[1,a]上的单调性,进而构造出关于a的方程,解方程即可求出a的值.
点评:本题考查的知识点是二次函数的性质,其中根据二次函数的图象和性质,判断出函数在区间[1,a]上为增函数是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x3-x,其图象记为曲线C.
(1)求函数f(x)的单调区间;
(2)证明:若对于任意非零实数x1,曲线C与其在点P1(x1,f(x1))处的切线交于另一点P2(x2,f(x2)),曲线C与其在点P2(x2,f(x2))处的切线交于另一点P3(x3,f(x3)),线段P1P2,P2P3与曲线C所围成封闭图形的面积分别记为S1,S2,则
S1S2
为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法正确的有(  )个.
①已知函数f(x)在(a,b)内可导,若f(x)在(a,b)内单调递增,则对任意的?x∈(a,b),有f′(x)>0.
②函数f(x)图象在点P处的切线存在,则函数f(x)在点P处的导数存在;反之若函数f(x)在点P处的导数存在,则函数f(x)图象在点P处的切线存在.
③因为3>2,所以3+i>2+i,其中i为虚数单位.
④定积分定义可以分为:分割、近似代替、求和、取极限四步,对求和In=
n
i=1
f(ξi)△x
中ξi的选取是任意的,且In仅于n有关.
⑤已知2i-3是方程2x2+px+q=0的一个根,则实数p,q的值分别是12,26.

查看答案和解析>>

科目:高中数学 来源: 题型:

某公司用480万元购得某种产品的生产技术后,再次投入资金1520万元购买生产设备,进行该产品的生产加工.已知生产这种产品每件还需成本费40元,经过市场调研发现:该产品的销售单价定在100元到300元之间较为合理.当销售单价定为100元时,年销售量为20万件;当销售单价超过100元,但不超过200元时,每件产品的销售价格每增加10元,年销售量将减少0.8万件;当销售单价超过200元,但不超过300元时,每件产品的销售价格在200元的基础上,每增加10元,年销售量将再减少1万件.设销售单价为x(元),年销售量为y(万件),年获利为w(万元).
(1)直接写出y与x之间的函数关系式;
(2)求第一年的年获利w与x之间的函数关系式,并说明投资的第一年,该公司是赢利还是亏损?若赢利,最大利润是多少?若亏损,最少亏损是多少?(
195225
=1521)

查看答案和解析>>

科目:高中数学 来源: 题型:

某化妆品生产企业为了占有更多的市场份额,拟在2007年度进行一系列促销活动,经过市场调查和测算,化妆品的年销量x万件与年促销费t万元之间满足3-x=
kt+1
(t≥0,k≠0且k为常数),如果不搞促销活动,化妆品的年销量只能是1万件.已知2007年生产化妆品的设备折旧、维修等固定费用为3万元,每生产1万件化妆品需再投入32万元的生产费用.若将每件化妆品的售价定为:平均每件促销费的一半与每件生产成本的150%之和,则当年生产的化妆品正好能销完.
(注:利润=销售收入-生产成本-促销费,生产成本=固定费用+生产费用)
(1)求常数k的值;
(2)将2007年的利润y(万元)表示为促销费t(万元)的函数;
(3)该企业2007年的促销费投入多少万元时,企业的年利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log3
3
x
1-x
,M(x1y1),N(x2y2)
是f(x)图象上的两点,横坐标为
1
2
的点P是M,N的中点.
(1)求证:y1+y2为定值;
(2)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
(n∈N*,n≥2),求
lim
n→∞
4Sn-9Sn
4Sn+1+9Sn+1
的值;
(3)在(2)的条件下,若an=
1
6
,n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
(n∈N*),Tn为数列{an}的前n项和,若Tn<m(Sn+1+1)对一切n∈N*都成立,试求实数m的取值范围.

查看答案和解析>>

同步练习册答案