精英家教网 > 高中数学 > 题目详情

【题目】如图,已知矩形,过平面,再过于点,过于点

Ⅰ)求证:

Ⅱ)若平面于点,求证:

【答案】1)见解析(2)见解析

【解析】试题分析:(1本题需经过多次线面垂直与线线垂直的转化:由平面,得再得平面即得可得平面即得因此平面即得结论2本题仍需经过多次线面垂直与线线垂直的转化:由平面,得再得平面即得可得平面即得结论

试题解析:∵在矩形中,

平面

点,

平面

平面

又∵

点,

平面

平面

又∵

点,

平面

平面

∵在矩形中,

平面

点,

平面

平面

又∵平面

点,

平面

平面

点睛:垂直、平行关系证明中应用转化与化归思想的常见类型.

(1)证明线面、面面平行,需转化为证明线线平行.

(2)证明线面垂直,需转化为证明线线垂直.

(3)证明线线垂直,需转化为证明线面垂直.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABCA1B1C1中,AB=BC=BB1DAC上的点,B1C∥平面A1BD

(1)求证:BD⊥平面

(2)若,求三棱锥A-BCB1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】盒中有6只灯泡,其中有2只是次品,4只是正品.从中任取2只,试求下列事件的概率.
(1)取到的2只都是次品;
(2)取到的2只中恰有一只次品.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在△ABC中,∠BAC=90°,PA⊥面ABC,AB=AC,D是BC的中点,则图中直角三角形的个数是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱锥的三个侧面均为边长是的等边三角形, 分别为 的中点.

(I)求的长.

(II)求证:

(III)求三棱锥的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方形ABCO的顶点C、A分别在x轴、y轴上,BC是菱形BDCE的对角线,若∠D=60°,BC=2,则点D的坐标是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,AB为⊙O的直径,点E在⊙O上,C为 的中点,过点C作直线CD⊥AE于D,连接AC、BC.

(1)试判断直线CD与⊙O的位置关系,并说明理由;
(2)若AD=2,AC= ,求AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三棱柱侧棱与底面垂直,分别是的中点.

)求证:平面

)求证:平面平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于x的一元二次方程x2+(2m+1)x+m2﹣1=0有两个不相等的实数根.
(1)求m的取值范围;
(2)写出一个满足条件的m的值,并求此时方程的根.

查看答案和解析>>

同步练习册答案