精英家教网 > 高中数学 > 题目详情
13.如图,定义在[-2,2]的偶函数f(x)的图象如图所示,函数g(x)=f(x)-$\frac{1}{4}x+\frac{1}{2}$的零点个数为(  )
A.1个B.2个C.3个D.4个

分析 问题转化为f(x)和y=$\frac{1}{4}$x-$\frac{1}{2}$的交点个数,画出函数图象,求出交点个数即可.

解答 解:函数g(x)=f(x)-$\frac{1}{4}x+\frac{1}{2}$的零点个数,
即f(x)和y=$\frac{1}{4}$x-$\frac{1}{2}$的交点个数,
画出函数f(x)和y=$\frac{1}{4}$x-$\frac{1}{2}$的图象,如图示:

显然图象有2个交点,
故函数g(x)=f(x)-$\frac{1}{4}x+\frac{1}{2}$的零点个数为2个,
故选:B.

点评 本题考查了函数图象问题,考查函数零点问题,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.$cos\frac{2017π}{3}$等于(  )
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.$-\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设F1,F2分别为双曲线C:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1(a>0,b>0)$的两个焦点,M,N是双曲线C的一条渐近线上的两点,四边形MF1NF2为矩形,A为双曲线的一个顶点,若△AMN的面积为$\frac{1}{2}{c}^{2}$,则该双曲线的离心率为(  )
A.3B.2C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图是函数f(x)=cos(πx+φ)(0<φ<$\frac{π}{2}$)的部分图象,则f(3x0)=(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),直线l为圆O:x2+y2=b2的一条切线并且过椭圆的右焦点,记椭圆的离心率为e.
(1)求椭圆的离心率e的取值范围;
(1)若直线l的倾斜角为$\frac{π}{6}$,求e的大小;
(2)是否存在这样的e,使得原点O关于直线l对称的点恰好在椭圆C上,若存在,请求出e的大小;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.如图,在平行六面体ABCD-A1B1C1D1中,底面是边长为2的正方形,若$∠{A_1}AB=∠{A_1}AD={60^0}$,且A1A=3,则A1C的长为$\sqrt{17}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数y=logax(a>0且a≠1)的图象经过点$(\;2\sqrt{2}\;,\;-1\;)$,函数y=bx(b>0且b≠1)的图象经过点$(\;1\;,\;2\sqrt{2})$,则下列关系式中正确的是(  )
A.a2>b2B.2a>2bC.${({\frac{1}{2}})^a}>{({\frac{1}{2}})^b}$D.(a${\;}^{\frac{1}{2}}$>b${\;}^{\frac{1}{2}}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=$\left\{\begin{array}{l}{-x+a,x<1}\\{{x}^{2},x≥1}\end{array}\right.$存在最小值,则当实数a取最小值时,f[f(-2)]=(  )
A.-2B.4C.9D.16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设数列{an}满足:a1=1,3a2-a1=1,且$\frac{2}{{a}_{n}}$=$\frac{{a}_{n-1}+{a}_{n+1}}{{a}_{n-1}{a}_{n+1}}$(n≥2)
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列b1=$\frac{1}{2}$,4bn=an-1an,设{bn}的前n项和Tn.证明:Tn<1.

查看答案和解析>>

同步练习册答案