分析 (1)根据平面内一动点P到点F(1,0)的距离与点P到y轴的距离的差等于1,可得当x≥0时,点P到F的距离等于点P到直线x=-1的距离,所以动点P的轨迹为抛物线;
(2)过点F的直线l的方程为x=my+1,代入y2=4x,可得y2-4my-4=0,利用韦达定理,结合△OAB面积=$\frac{1}{2}$|y1-y2|,即可求△OAB面积的最小值.
解答 解:(1)∵平面内一动点P到点F(1,0)的距离与点P到y轴的距离的差等于1,
∴当x≥0时,点P到F的距离等于点P到直线x=-1的距离,
∴动点P的轨迹为抛物线,方程为y2=4x(x≥0);
∴动点P的轨迹C的方程为y2=4x(x≥0);
(2)设A点坐标为(x1,y1),B点坐标为(x2,y2),
过点F的直线l的方程为x=my+1,代入y2=4x,可得y2-4my-4=0,
∴y1+y2=4m,y1y2=-4,
∴△OAB面积=$\frac{1}{2}$|y1-y2|=$\frac{1}{2}$$\sqrt{16{m}^{2}+16}$,
∴m=0时,△OAB面积的最小值为2.
点评 本题考查轨迹方程,考查直线与抛物线的位置关系,解题的关键是确定抛物线的方程,利用韦达定理解题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | -$\frac{3}{16}$ | B. | $\frac{5}{16}$ | C. | $\frac{15}{16}$ | D. | $\frac{19}{16}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com