精英家教网 > 高中数学 > 题目详情
精英家教网已知如图,AB为⊙O的直径,PA、PC是⊙O的切线,A、C为切点,∠BAC=30°.
(1)求∠P的大小;
(2)若AB=6,求PA的长.
分析:(1)由圆的切线的性质,得∠PAB=90°,结合∠BAC=30°得∠PAC=90°-30°=60°.由切线长定理得到PA=PC,得△PAC是等边三角形,从而可得∠P=60°.
(2)连结BC,根据直径所对的圆周角为直角,得到∠ACB=90°,结合Rt△ACB中AB=6且∠BAC=30°,得到AC=ABcos∠BAC=3
3
.最后在等边△PAC中,可得PA=AC=3
3
解答:解:(1)∵PA是⊙O的切线,AB为⊙O的直径,精英家教网
∴PA⊥AB,即∠PAB=90°.
∵∠BAC=30°,∴∠PAC=90°-30°=60°.
又∵PA、PC切⊙O于点A、C,
∴PA=PC,可得△PAC是等边三角形,得∠P=60°.
(2)如图,连结BC.
∵AB是直径,∠ACB=90°,
∴在Rt△ACB中,AB=6,∠BAC=30°,
可得AC=ABcos∠BAC=6×cos30°=3
3

又∵△PAC是等边三角形,∴PA=AC=3
3
点评:本题着重考查了圆的切线的性质定理、切线长定理、直径所对的圆周角、等边三角形的判定与性质和解直角三角形等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网在A,B,C,D四小题中只能选做2题,每题10分,共计20分.
A、如图,AB为⊙O的直径,BC切⊙O于B,AC交⊙O于P,CE=BE,E在BC上.求证:PE是⊙O的切线.
B、设M是把坐标平面上的点的横坐标伸长到2倍,纵坐标伸长到3倍的伸压变换.
(1)求矩阵M的特征值及相应的特征向量;
(2)求逆矩阵M-1以及椭圆
x2
4
+
y2
9
=1
在M-1的作用下的新曲线的方程.
C、已知某圆的极坐标方程为:ρ2-4
2
ρcos(θ-
π
4
)+6=0

(Ⅰ)将极坐标方程化为普通方程;并选择恰当的参数写出它的参数方程;
(Ⅱ)若点P(x,y)在该圆上,求x+y的最大值和最小值.
D、若关于x的不等式|x+2|+|x-1|≥a的解集为R,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,AB为圆O的直径,点E、F在圆上,已知AB∥EF,AB=BC=4,AE=EF=BF=2,AD=2.
直角梯形ABCD所在平面与圆O所在平面互相垂直.
(Ⅰ)求证:平面CBE⊥平面DAE;
(Ⅱ)求平面CDF与平面ABCD所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

 已知:如图,AB为⊙O的直径,PA、PC是⊙O的切线,A、C为切点,∠BAC=30

(1)求∠P的大小;

(2)若AB = 6,求PA的长.

查看答案和解析>>

科目:高中数学 来源:2010年江苏省镇江市丹阳市高考数学模拟试卷(二)(解析版) 题型:解答题

在A,B,C,D四小题中只能选做2题,每题10分,共计20分.
A、如图,AB为⊙O的直径,BC切⊙O于B,AC交⊙O于P,CE=BE,E在BC上.求证:PE是⊙O的切线.
B、设M是把坐标平面上的点的横坐标伸长到2倍,纵坐标伸长到3倍的伸压变换.
(1)求矩阵M的特征值及相应的特征向量;
(2)求逆矩阵M-1以及椭圆在M-1的作用下的新曲线的方程.
C、已知某圆的极坐标方程为:
(Ⅰ)将极坐标方程化为普通方程;并选择恰当的参数写出它的参数方程;
(Ⅱ)若点P(x,y)在该圆上,求x+y的最大值和最小值.
D、若关于x的不等式|x+2|+|x-1|≥a的解集为R,求实数a的取值范围.

查看答案和解析>>

同步练习册答案