ijÖÖ²¨µÄ´«²¥ÊÇÓÉÇúÏßf£¨x£©=Asin£¨¦Øx+¦Õ£©£¨A£¾0£©À´ÊµÏֵģ¬ÎÒÃǰѺ¯Êý½âÎöʽf£¨x£©=Asin£¨¦Øx+¦Õ£©³ÆΪ¡°²¨¡±£¬°ÑÕñ·ù¶¼ÊÇA µÄ²¨³ÆΪ¡°AÀನ¡±£¬°ÑÁ½¸ö½âÎöʽÏà¼Ó³ÆΪ²¨µÄµþ¼Ó£®
£¨1£©ÒÑÖª¡°1 Àನ¡±ÖеÄÁ½¸ö²¨f1£¨x£©=sin£¨x+¦Õ1£©Óëf2£¨x£©=sin£¨x+¦Õ2£©µþ¼ÓºóÈÔÊÇ¡°1Àನ¡±£¬Çó¦Õ2-¦Õ1µÄÖµ£»
£¨2£©ÔÚ¡°AÀನ¡°ÖÐÓÐÒ»¸öÊÇf1£¨x£©=sinx£¬´Ó AÀನÖÐÔÙÕÒ³öÁ½¸ö²»Í¬µÄ²¨£¨Ã¿Á½¸ö²¨µÄ³õÏà¦Õ¶¼²»Í¬£©Ê¹µÃÕâÈý¸ö²»Í¬µÄ²¨µþ¼ÓÖ®ºóÊÇ¡°Æ½²¨¡±£¬¼´µþ¼Óºóy=0£¬²¢ËµÃ÷ÀíÓÉ£®
¿¼µã£ºÈý½Çº¯ÊýÖеĺãµÈ±ä»»Ó¦ÓÃ,Á½½ÇºÍÓë²îµÄÕýÏÒº¯Êý
רÌ⣺Èý½Çº¯ÊýµÄÇóÖµ,Èý½Çº¯ÊýµÄͼÏñÓëÐÔÖÊ
·ÖÎö£º£¨1£©Ê×ÏȶԺ¯ÊýµÄ¹Øϵʽ½øÐкãµÈ±ä»»½øÒ»²½Çó³öº¯ÊýÖнǵĴóС£®
£¨2£©ÀûÓã¨1£©µÄ½áÂÛÔÙ¶Ôº¯Êý¹Øϵʽ½øÐб任×îºóÖ¤Ã÷³öº¯Êýʱƽ²¨£®
½â´ð£º ½â£º£¨1£©f1£¨x£©+f2£¨x£©=sin£¨x+¦µ1£©+sin£¨x+¦µ2£©
=£¨cos¦µ1+cos¦µ2£©sinx+£¨sin¦µ1+sin¦µ2£©cosx¦µ
ËùÒÔº¯ÊýµÄÕñ·ùΪ£º
(cos¦µ1+cos¦µ2)2+(sin¦µ1+sin¦µ 2)2
=
2+2cos(¦µ 1-¦µ 2)

Ôò£º
2+2cos(¦µ 1-¦µ 2)
=1
¼´£ºcos(¦µ 1-¦µ2)=-
1
2

ËùÒÔ£º¦µ 1-¦µ 2=2k¦Ð¡À
2¦Ð
3
£¨k¡ÊZ£©

£¨2£©Éèf2£¨x£©=Asin£¨x+¦µ1£©£¬f3£¨x£©=Asin£¨x+¦µ2£©
Ôò£º
f1£¨x£©+f2£¨x£©+f3£¨x£©
=Asinx+Asin£¨x+¦µ1£©+Asin£¨x+¦µ2£©
=Asinx£¨1+cos¦µ1+cos¦µ2£©+Acosx£¨sin¦µ1+sin¦µ2£©=0ºã³ÉÁ¢£®
Ôò£º
1+cos¦µ 1+cos¦µ 2=0
sin¦µ 1+sin¦µ 2=0

¼´£º
cos¦µ 2=-cos¦µ 1-1
sin¦µ 1=-sin¦µ 2

ÏûÈ¥¦µ2
µÃµ½£ºcos¦µ 1=-
1
2

ÈôÈ¡¦µ1=
2¦Ð
3
£¬Ôò¿ÉÈ¡¦µ2=
4¦Ð
3

´Ëʱ£ºf2(x)=Asin(x+
2¦Ð
3
)
£¬f3(x)=Asin(x+
4¦Ð
3
)

f1£¨x£©+f2£¨x£©+f3£¨x£©
=A(sinx+(-
1
2
sinx+
3
2
cosx)
+(-
1
2
sinx-
3
2
cosx))=0
=0
ËùÒÔΪƽ²¨£®
µãÆÀ£º±¾Ì⿼²éµÄ֪ʶҪµã£ºÈý½Çº¯Êý¹ØϵʽµÄºãµÈ±ä»»£¬ÐÅÏ¢ÌâµÄÓ¦Óã¬Ö÷Òª¿¼²éѧÉú¶Ôʵ¼ÊÎÊÌâµÄÓ¦ÓÃÄÜÁ¦£¬ÊôÓÚÖеµÌâÐÍ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=2cosxsin£¨x+
¦Ð
6
£©+1£¬x¡ÊR£®
£¨¢ñ£©Çóº¯Êýf£¨x£©µÄ×îСÕýÖÜÆÚ¼°µ¥µ÷µÝÔöÇø¼ä£»
£¨¢ò£©Èôx¡Ê[-
¦Ð
6
£¬
¦Ð
3
]£¬Çóº¯ÊýµÄÖµÓò£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÈçͼÊÇÕý·½ÌåµÄƽÃæÕ¹¿ªÍ¼£¬ÔÚÕâ¸öÕý·½ÌåÖУ¬ÕýÈ·µÄÃüÌâÊÇ£¨¡¡¡¡£©
A¡¢BDÓëCF³É60¡ã½Ç
B¡¢BDÓëEF³É60¡ã½Ç
C¡¢ABÓëCD³É60¡ã½Ç
D¡¢ABÓëEF³É60¡ã½Ç

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¶ÔÓÚº¯Êýf£¨x£©£¬ÎÒÃÇ°ÑʹµÃf£¨x£©=x³ÉÁ¢µÄx³ÆΪº¯Êýf£¨x£©µÄ¡°²»¶¯µã¡±£»°ÑʹµÃf£¨f£¨x£©£©=x³ÉÁ¢µÄx³ÆΪº¯Êýf£¨x£©µÄ¡°Îȶ¨µã¡±£¬º¯Êýf£¨x£©µÄ¡°²»¶¯µã¡±ºÍ¡°Îȶ¨µã¡±¹¹³ÉµÄ¼¯ºÏ·Ö±ð¼ÇΪAºÍB£¬¼´A={x|f£¨x£©=x}£¬B={x|f£¨f£¨x£©£©=x}£®
£¨1£©ÇóÖ¤£ºA⊆B£»
£¨2£©Èôf£¨x£©=2x-1£¬Ç󼯺ÏB£»
£¨3£©Èôf£¨x£©=x2-a£¬ÇÒA=B¡Ù∅£¬ÇóʵÊýaµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ1£¬Ö±½ÇÌÝÐÎABCDÖУ¬¡ÏA=¡ÏB=90¡ã£¬AD=AB=2£¬BC=3£¬E£¬F·Ö±ðÊÇAD£¬BCÉϵÄÁ½µã£¬ÇÒAE=BF=1£¬GΪABÖе㣬½«ËıßÐÎABCDÑØEFÕÛÆðµ½£¨Í¼2£©ËùʾµÄλÖã¬Ê¹µÃEG¡ÍGC£¬Á¬½ÓAD¡¢BC¡¢ACµÃ£¨Í¼2£©ËùʾÁùÃæÌ壮
£¨¢ñ£©ÇóÖ¤£ºEG¡ÍƽÃæCFG£»
£¨¢ò£©ÇóÖ±ÏßCDÓëƽÃæCFGËù³ÉµÄ½ÇµÄÕýÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÈçͼËùʾ£¬A£¬B£¬CÊÇÔ²OÉϵÄÈýµã£¬COµÄÑÓ³¤ÏßÓëÏ߶ÎBAµÄÑÓ³¤Ïß½»ÓÚÔ²ÍâµÄµãD£¬Èô
OC
=m
OA
+n
OB
£¬Ôòm+nµÄÈ¡Öµ·¶Î§ÊÇ£¨¡¡¡¡£©
A¡¢£¨1£¬+¡Þ£©
B¡¢£¨-¡Þ£¬-1£©
C¡¢£¨0£¬1£©
D¡¢£¨-1£¬0£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª¹ØÓÚxµÄº¯Êýf£¨x£©=lnx+a£¨x-1£©2£¨a¡ÊR£©£®
£¨1£©Çóº¯Êýf£¨x£©ÔÚµãP£¨1£¬0£©´¦µÄÇÐÏß·½³Ì£»
£¨2£©Èôº¯Êýf£¨x£©Óм«Ð¡Öµ£¬ÊÔÇóaµÄÈ¡Öµ·¶Î§£»
£¨3£©ÈôÔÚÇø¼ä[1£¬+¡Þ£©ÉÏ£¬º¯Êýf£¨x£©²»³öÏÖÔÚÖ±Ïßy=x-1µÄÉÏ·½£¬ÊÔÇóaµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Õý·½ÌåABCD-A1B1C1D1ÖУ¬E£¬F£¬G£¬·Ö±ðÊÇAB£¬BC£¬CC1µÄÖе㣬ÇóEFÓëBGËù³É½ÇµÄÓàÇÐÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªPΪƽÃæABCÄÚÒ»µã£¬OΪ¿Õ¼äÈÎÒâÒ»µã£¬Èô
OP
=
1
2
OA
+
1
3
OB
+¦Ë
OC
£¬ÔòµÄֵΪ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸