精英家教网 > 高中数学 > 题目详情
6.已知向量$\overrightarrow{a}$=(sinθ,cosθ),$\overrightarrow{b}$=(3,-4),若$\overrightarrow{a}$∥$\overrightarrow{b}$,则tan2θ=±$\frac{24}{7}$.

分析 由向量平行求出sinθ=-$\frac{3}{4}cosθ$,由同角三角函数关系式求出cos2θ=$\frac{16}{25}$,由此求出cos2θ,从而能求出结果.

解答 解:∵向量$\overrightarrow{a}$=(sinθ,cosθ),$\overrightarrow{b}$=(3,-4),$\overrightarrow{a}$∥$\overrightarrow{b}$,
∴$\frac{sinθ}{3}=\frac{cosθ}{-4}$,
∴sinθ=-$\frac{3}{4}cosθ$,
∴sin2θ+cos2θ=$\frac{9}{16}co{s}^{2}θ+co{s}^{2}θ$=1,
解得cos2θ=$\frac{16}{25}$,∴cos2θ=2×$\frac{16}{25}$-1=$\frac{7}{25}$,
∴sin2θ=$±\sqrt{1-(\frac{7}{25})^{2}}$=±$\frac{24}{25}$,
∴tan2θ=$\frac{sin2θ}{cos2θ}$=$\frac{±\frac{24}{25}}{\frac{7}{25}}$=$±\frac{24}{7}$.
故答案为:$±\frac{24}{7}$.

点评 本题考查三角函数值的求法,是中档题,解题时认真审题,注意向量平行、同角三角函数关系式、二倍角公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.为了解少年儿童的肥胖是否与常喝碳酸饮料有关,现对30名六年级学生进行了问卷调查得到如下列联表:
常喝不常喝合计
肥胖2
不肥胖18
合计30
已知在全部30人中随机抽取1人,抽到肥胖的学生的概率为$\frac{4}{15}$.
(1)请将上面的列联表补充完整
(2)是否有99.5%的把握认为肥胖与常喝碳酸饮料有关?说明你的理由
(3)4名调查人员随机分成两组,每组2人,一组负责问卷调查,另一组负责数据处理.求工作人员甲分到负责收集数据组,工作人员乙分到负责数据处理组的概率.
参考数据:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(参考公式:${K}^{2}=\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.平行四边形ABCD中,AB=4,AD=2,$\overrightarrow{AB}$•$\overrightarrow{AD}$=4,点P在边CD上,则$\overrightarrow{PA}$•$\overrightarrow{PB}$的取值范围是(  )
A.[-1,8]B.[-1,+∞)C.[0,8]D.[-1,0]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知曲线C的极坐标方程为ρ=4cosθ,以极点为平面直角坐标系的原点,轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程是$\left\{\begin{array}{l}{x=\frac{\sqrt{3}}{2}t+m}\\{y=\frac{1}{2}t}\end{array}\right.$(t是参数)
(I)将曲线C的极坐标方程和直线1的参数方程化为普通方程;
(Ⅱ)若直线l与曲线C相交于A、B两点,点P(m,0),若|PA|•|PB|=5,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数f(x)=sinx-cosx,x∈[0,$\frac{π}{2}$]的最小值为(  )
A.-2B.-$\sqrt{3}$C.-$\sqrt{2}$D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}的通项公式是an=1-$\frac{1}{n}$,求证该数列是递增数列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知数列{an}满足an=3an-1+5,a1=1,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=$\frac{1}{3}$sin(2x-$\frac{2π}{3}$),其中x∈R,其中正确说法的序号是②④
①函数的最小正周期是$\frac{π}{2}$;
②函数f(x)的图象关于点($\frac{π}{3}$,0)对称;
③函数的图象是由y=$\sqrt{3}$sin2x的图象向右平移$\frac{2π}{3}$;
④函数f(x)在区间[$\frac{π}{12}$,$\frac{5π}{12}$]上单调递增.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知圆C的圆心与点P(0,1)关于直线y=x+1对称,直线3x+4y+1=0与圆C相交于A,B两点,且|AB|=4.
(1)求圆C的标准方程;
(2)设直线l:mx-y+1-m=0(m∈R)与圆C的交点为E、F,求弦EF的中点M的轨迹方程.

查看答案和解析>>

同步练习册答案