精英家教网 > 高中数学 > 题目详情
18.已知A={x|kx2-8x+16=0}只有一个元素,求实数k的值.

分析 集合A={kx2-8x+16=0}只有一个元素,等价于方程有且只有一个解,分类讨论,即可得到结论.

解答 解:当k=0时,原方程变为-8x+16=0,x=2,此时集合A={2};
当k≠0时要使一元二次方程kx2-8x+16=0有一个实根,需△=64-64k=0,即k=1.此时方程的解为x1=x2=4.集合A={4},满足题意.
综上所述,实数k的值为0或1.

点评 本题考查集合的表示,考查学生分析转化问题的能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.设a,b∈R+,且a≠b,则有(  )
A.$\frac{a+b}{2}$<$\sqrt{ab}$<$\sqrt{\frac{{a}^{2}+{b}^{2}}{2}}$B.$\sqrt{ab}$<$\frac{a+b}{2}$<$\sqrt{\frac{{a}^{2}+{b}^{2}}{2}}$
C.$\sqrt{ab}$<$\sqrt{\frac{{a}^{2}+{b}^{2}}{2}}$<$\frac{a+b}{2}$D.$\sqrt{\frac{{a}^{2}+{b}^{2}}{2}}$<$\sqrt{ab}$<$\frac{a+b}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知复数z=$\frac{{a}^{2}-7a+6}{{a}^{2}-1}$+(a2-5a-6)i(a∈R),实数a取什么值时,z是(1)实数?(2)虚数?(3)纯虚数?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.(文)已知复数z=6+8i,则-|z|=(  )
A.-5B.-10C.$\frac{14}{9}$D.-$\frac{16}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.正方体ABCD-A1B1C1D1的棱长为1,点M在$\overline{A{C}_{1}}$上且$\overrightarrow{AM}$=$\frac{1}{2}$$\overrightarrow{M{C}_{1}}$,N为B1B的中点,则|$\overrightarrow{MN}$|为(  )
A.$\frac{\sqrt{15}}{6}$B.$\frac{\sqrt{6}}{6}$C.$\frac{\sqrt{21}}{6}$D.$\frac{\sqrt{15}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知集合A={x|x-2≤0,x∈R},B={x|x<-1,x∈R},C={x|x>-2},求A∩B,A∩C,(A∩B)∩C.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在求某些函数的导数时,可以先在解析式两边取对数,再求导数,这比用一般方法求导数更为简单,如求y=xex的导数,可先在两边取对数,得lny=lnxex=exlnx,再在两边分别对x求导数,得$\frac{1}{y}•{y^'}={e^x}lnx+{e^x}•\frac{1}{x}$即为$y_x^'=y({{e^x}lnx+{e^x}•\frac{1}{x}})$,即导数为$y={x^{e^x}}({{e^x}lnx+\frac{e^x}{x}})$.若根据上面提供的方法计算函数y=xx的导数,则y′=xx(1+lnx).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知复数z=2-i,则$\frac{z+1}{\overline{z}-1}$的虚部为(  )
A.2B.-2C.4D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=$\frac{a}{{a}^{2}-1}$(ax-$\frac{1}{{a}^{x}}$)(a>1,a≠1),问:在y=f(x)的图象上是否存在两个不同点,使过两点的直线与x轴平行?若存在,证明你的结论;若不存在,说明理由.

查看答案和解析>>

同步练习册答案