精英家教网 > 高中数学 > 题目详情
已知函数f(x)满足f(1-x)+2f(x-1)=x,求f(x).
考点:函数解析式的求解及常用方法
专题:函数的性质及应用
分析:设1-x=t,得f(t)+2f(-t)=1-t,以-t代替t,得f(-t)+2f(t)=1+t,由此联立方程组能求出f(x).
解答: 解:设1-x=t,得f(t)+2f(-t)=1-t,①
以-t代替t,得f(-t)+2f(t)=1+t,②
②×2-①,得:
3f(t)=1+3t,
∴f(t)=t+
1
3

∴f(x)=x+
1
3
点评:本题考查函数的解析式的求法,是中档题,解题时要认真审题,注意函数性质的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合A={1,a,3},B={2,3,|a-1|},若A=B,则a=(  )
A、-2B、-1C、1D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合M={x|-1≤x<2},N={x|-1<x-a≤0},若M∩N≠∅,则a的取值范围是(  )
A、a<-1,或a≥3
B、-3<a≤1
C、-3≤a≤3
D、-1≤a<3

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)=
2-
a
x
a-1
在[2,+∞)上是增函数,则a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=ln(1+
1
x
)+
1-x
的定义域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
y2
a2
+
x2
b2
=1(a>b>0)的一个焦点与抛物x2=4y的焦点F重合,且椭圆的离心率为
2
2

(1)求椭圆的方程.
(2)过点P(t,-1)作抛物线的两条切线,切点分别为M,N,直线MN与椭圆交于A,B两点,直线PF与椭圆交于C,D两点,如图所示.
①求直线MN的方程.
②求四边形ABCD的面积的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

将各项均为正整数的数列{an}排成如图所示的三角形数阵(第n行有n个数;在同一行中,各项的下标从左到右依次增大).bn表示该数阵中第n行第1个数.已知数列{bn}为公比为q等比数列,a1=1,a3=a2+1,且从第3行开始,从左到右,各行均构成公差为d的等差数列.
(Ⅰ)设q=2,d=1,试确定a2014是数阵的第几行的第几个数,并求a2014的值;
(Ⅱ)设q=2,d=1,试确定数列{ak}(k∈N*,k≤2014)中能被3整除的项的个数.
(Ⅲ)求证:数列{an}是单调递增数列的充分必要条件是q≥2,d≥1且q3-q2>2d(q,d∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知P={x|y=
x-1
},Q={y|y=
x-1
},则下列结论正确的是(  )
A、P=QB、P∪Q=R
C、P?QD、Q?P

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xOy中,已知点P(
1
2
,1),直线l的参数方程为
x=
1
2
+
3
2
t
y=1+
1
2
t
(t为参数)若以O为极点,以Ox为极轴,选择相同的单位长度建立极坐标系,则曲线C的极坐标方程为ρ=
2
cos(θ-
π
4

(Ⅰ)求直线l的普通方程和曲线C的直角坐标方程;
(Ⅱ)设直线l与曲线C相交于A,B两点,求点P到A,B两点的距离之积.

查看答案和解析>>

同步练习册答案