精英家教网 > 高中数学 > 题目详情

【题目】为考察高中生的性别与是否喜欢数学课程之间的关系,在我市某普通中学高中生中随机抽取200名学生,得到如下2×2列联表:

喜欢数学课

不喜欢数学课

合计

30

60

90

20

90

110

合计

50

150

200

经计算K2≈6.06,根据独立性检验的基本思想,约有(填百分数)的把握认为“性别与喜欢数学课之间有关系”.

【答案】97.5%
【解析】因为K2≈6.06>5.024,对照表格:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

所以有97.5%的把握认为“性别与喜欢数学课之间有关系”.
本题主要考查了独立性检验的基本思想,解决问题的关键是根据所给变量关系结合独立性检验的基本思想分析计算即可

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=loga ,g(x)=1+loga(x﹣1),(a>0且a≠1),设f(x)和g(x)的定义域的公共部分为D,
(1)求集合D;
(2)当a>1时.若不等式g(x﹣ )﹣f(2x)>2在D内恒成立,求a的取值范围;
(3)是否存在实数a,当[m,n]D时,f(x)在[m,n]上的值域是[g(n),g(m)],若存在,求实数a的取值范围,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 中, 分别为两腰上的高、求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为调查了解某省属师范大学师范类毕业生参加工作后,从事的工作与教育是否有关的情况,该校随机调查了该校80位性别不同的2016年师范类毕业大学生,得到具体数据如下表:

与教育有关

与教育无关

合计

30

10

40

35

5

40

合计

65

15

80

1)能否在犯错误的概率不超过5%的前提下,认为师范类毕业生从事与教育有关的工作与性别有关

参考公式:).

附表:

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.455

0.708

1.323

2.072

2.706

3.841

5.023

6.635

2)求这80位师范类毕业生从事与教育有关工作的频率;

3)以(2)中的频率作为概率.该校近几年毕业的2000名师范类大学生中随机选取4名,记这4名毕业生从事与教育有关的人数为,求的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知y=f(x)+x是偶函数,且f(2)=lg32+log416+6lg +lg ,若g(x)=f(x)+1,则g(﹣2)=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】由大于0的自然数构成的等差数列{an},它的最大项为26,其所有项的和为70;
(1)求数列{an}的项数n;
(2)求此数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=log3(ax2+3x+4)
(1)若f(1)<2,求a的取值范围
(2)若a=1,求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为的函数存在两个零点.

1)求实数的取值范围;

2)若,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,侧面底面,且 的中点.

(Ⅰ)求证: 平面

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

同步练习册答案