精英家教网 > 高中数学 > 题目详情

【题目】已知函数,其中为常数且.

(1)当时,求曲线在点处的切线方程;

(2)讨论函数的单调性;

(3)当时, 若存在使成立,求实数的取值范围.

【答案】 (1) ;(2)当, 上单调递减,上单调弟增;, 上单调递增,在上单调递减.(3).

【解析】试题分析:(1)当时,求函数的导数,以及,利用公式求解;(2)求函数的导数并化解为,分,两种情况讨论函数的单调性,(3)当时,根据条件可将问题转化为,即根据(2)的最小值和求函数的最大值,求实数的取值范围.

试题解析:(1)时,

=

切线的斜率,又

故切线的方程为,即

(2),

(), ,

, ;, .

上单调递减,上单调递增

() 有两个实数根

,,

, .

上均为单调增函数,上为减函数.

综上所述,, 上单调递减,上单调弟增;,

上单调递增,在上单调递减.

(3)当时,由(2)知,

上为增函数. .依题意有.

的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,点在椭圆上.

(1)求椭圆的方程;

(2)若不过原点的直线与椭圆相交于两点,与直线相交于点,且是线段的中点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知分别为椭圆的左、右焦点,且椭圆经过点和点,其中为椭圆的离心率.

(1)求椭圆的方程;

(2)过点的直线椭圆于另一点,点在直线上,且.若,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年9月16日下午5时左右,今年第22号台风“山竹”在广东江门川岛镇附近正面登陆,给当地人民造成了巨大的财产损失,某记者调查了当地某小区的100户居民由于台风造成的经济损失,将收集的数据分成五组,并作出如下频率分布直方图.

(Ⅰ)根据频率分布直方图估计该小区居民由于台风造成的经济损失的众数和平均值.

(Ⅱ)“一方有难,八方支援”,台风后居委会号召小区居民为台风重灾区捐款,记者调查的100户居民捐款情况如下表格,在表格空白处填写正确数字,并说明是否有99%以上的把握认为捐款数额多于或少于500元和自身经济损失是否到4000元有关?

(Ⅲ)将上述调查所得到的频率视为概率,现在从该地区大量受灾居民中,采用随机抽样方法每次抽取1户居民,抽取3次,记被抽取的3户居民中自身经济损失超过元的人数为,若每次抽取的结果是相互独立的,求的分布列及期望.

参考公式:,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数上是减函数,求实数的取值范围;

(2)若函数上存在两个极值点证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的几何体是圆柱的一部分,它是由矩形及其内部边所在直线为旋转轴旋转得到的,点是弧上的一点,点是弧的中点.

1)求证:平面平面

(2)当时,求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,且

(1)判断函数的奇偶性

(2) 判断函数(1,+)上的单调性,并用定义证明你的结论;

(3)求实数a的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,直线与抛物线交于两点.

(Ⅰ)若直线过焦点,且与圆交于(其中轴同侧),求证: 是定值;

(Ⅱ)设抛物线点的切线交于点,试问: 轴上是否存在点,使得为菱形?若存在,请说明理由并求此时直线的斜率和点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】高三一班、二班各有6名学生去参加学校组织的高中数学竞赛选拔考试,成绩如茎叶图所示.

(1)若一班、二班6名学生的平均分相同,求值;

(2)若将竞赛成绩在内的学生在学校推优时,分别赋分、2分、3分,现在从一班的6名参赛学生中选两名,求推优时,这两名学生赋分的和为4分的概率.

查看答案和解析>>

同步练习册答案