精英家教网 > 高中数学 > 题目详情
5.如图所示,PA⊥矩形ABCD所在的平面,M、N分别是AB、PC的中点.
(1)求证:MN∥平面PAD;
(2)求证:MN⊥CD;
(3)若PA=AD,求证:MN⊥平面PCD.

分析 (1)取PD的中点E,连结AE、EN,证明四边形AMNE是平行四边形,可得MN∥AE,利用线面平行的判定,即可得出结论.
(2)由线面垂直得PA⊥CD,由矩形性质得AD⊥CD,由此能证明CD⊥MN.
(3)由等腰三角形性质得AE⊥PD,又AE⊥CD,从而AE⊥平面PCD,由此能证明MN⊥平面PCD.

解答 证明:(1)如图,取PD的中点E,连结AE、EN
则有EN∥CD∥AM,且EN=$\frac{1}{2}$CD=$\frac{1}{2}$AB=MA.
∴四边形AMNE是平行四边形.
∴MN∥AE.
∵AE?平面PAD,MN?平面PAD,
∴MN∥平面PAD.
(2)∵PA⊥矩形ABCD所在的平面,CD?平面ABCD,
∴PA⊥CD,
∵矩形ABCD中,AD⊥CD,PA∩AD=A,
∴CD⊥平面PAD,又AE?平面PAD,∴CD⊥AE,
∵MN∥AE,∴CD⊥MN.
(3)∵PA=AD,E是PD中点,∴AE⊥PD,
又AE⊥CD,CD∩PD=D,
∴AE⊥平面PCD,
∵MN∥AE,∴MN⊥平面PCD.

点评 本题考查线面平行的证明,考查线线垂直的证明,考查线面垂直的证明,是中档题,解题时要认真审题,注意空间中线线、线面、面面间的位置关系的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.某班50位同学周考数学成绩的频率分布直方图如图所示,其中成绩分组区间是:[40,50)、[50,60)、[60,70)、[70,80)、[80,90)、[90,100].
(1)求图中[80,90)的矩形高的值,并估计这50人周考数学的平均成绩;
(2)根据直方图求出这50人成绩的众数和中位数(精确到0.1);
(3)从成绩在[40,60)的学生中随机选取2人,求这2人成绩分别在[40,50)、[50,60)的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若关于x的不等式3ax2+2x-1>0在(2,+∞)上有解,则实数a的取值范围是[-$\frac{1}{3}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在正三棱锥S-ABC中,M,N分别是棱SC、BC的中点,且MN⊥AM,若侧棱SA=$\sqrt{3}$,则正三棱锥S-ABC外接球的表面积是9π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知sinθcosθ=$\frac{60}{169}$,且$\frac{π}{4}$<θ<$\frac{π}{2}$,则sinθ=$\frac{12}{13}$,cosθ=$\frac{5}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.不等式x+y>2所表示的平面区域是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知点F1,F2分别为双曲线x2-$\frac{{y}^{2}}{3}$=1的左,右焦点,点P为双曲线右支上的任意一点,则$\frac{|P{F}_{1}{|}^{2}}{|P{F}_{2}|}$的最小值为(  )
A.8B.5C.4D.9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若($\frac{3}{5}$)x-1>1,则x的取值范围是(-∞,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知f(x)=ax2+bx+c,f(0)=2,f(1)=0,f(-1)=6
(1)求f(x)的解析式
(2)求f(x)的定义域,值域
(3)画出f(x)的图象.

查看答案和解析>>

同步练习册答案