精英家教网 > 高中数学 > 题目详情

直线与两坐标轴所围成的三角形的面积不大于1,那么的取值范围是

A.        B. 

C.     D.

 

【答案】

C

【解析】

试题分析:直线x-2y+b=0与两坐标轴的交点是A(-b,0),B(0,),

∴与两坐标轴所围成的三角形的面积为||=1,∴b=±2,

结合图形可得b∈[-2,0)∪(0,2].故选C。

考点:本题主要考查直线方程的一般式、直线的截距。

点评:基本题,应熟练地由直线方程的一般式化为其它形式,数形结合有助于正确确定选项。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点P1(a1,b1),P2(a2,b2),…,Pn(an,bn)(n∈N*)都在函数y=log
12
x
的图象上.
(Ⅰ)若数列{bn}是等差数列,求证数列{an}为等比数列;
(Ⅱ)若数列{an}的前n项和为Sn=1-2-n,过点Pn,Pn+1的直线与两坐标轴所围成三角形面积为cn,求使cn≤t对n∈N*恒成立的实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P1(a1,b1),P2(a2,b2),…,Pn(an,bn)(n为正整数)都在函数y=(
1
2
)x
的图象上.
(1)若数列{an}是首项为1,公差也为1的等差数列,求{bn}的通项公式;
(2)对(1)中的数列{an}和{bn},过点Pn,Pn+1的直线与两坐标轴所围成的三角形面积为cn,试证明:对一切正整数n,cn
9
8

(3)对(1)中的数列{an},对每个正整数k,在ak与ak+1之间插入3k-1个3,得到一个新的数列{dn},问a5是数列{dn}中的第几项.若设Sn是数列{dn}的前n项和,试求S100的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P1(a1,b1),P2(a2,b2),…,Pn(an,bn)(n为正整数)都在函数y=(
12
)x
图象上.
(Ⅰ)若数列{an}是等差数列,证明:数列{bn}是等比数列;
(Ⅱ)设an=n(n为正整数),过点Pn,Pn+1的直线与两坐标轴所围成的三角形面积为cn,试求最小的实数t,使cn≤t对一切正整数n恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P1(a1,b1),P2(a2,b2),…,Pn(an,bn)(n为正整数)都在函数y=(
12
)x
图象上.
(Ⅰ)若数列{an}是等差数列,证明:数列{bn}是等比数列;
(Ⅱ)设an=n(n为正整数),过点Pn,Pn+1的直线与两坐标轴所围成的三角形面积为cn,试求最小的实数t,使cn≤t对一切正整数n恒成立;
(Ⅲ)对(Ⅱ)中的数列{an},对每个正整数k,在ak与ak+1之间插入3k-1个3,得到一个新的数列{dn},设Sn是数列{dn}的前n项和,试探究2008是否数列{Sn}中的某一项,写出你探究得到的结论并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年雅礼中学二模文)已知点,…,为正整数)都在函数的图像上.

(Ⅰ)若数列是首项为,公差也为的等差数列,求的通项公式;

(Ⅱ)(Ⅰ)中的数列,过点的直线与两坐标轴所围成的三角形面积为,求的通项公式.

查看答案和解析>>

同步练习册答案