精英家教网 > 高中数学 > 题目详情

【题目】在去年的足球甲联赛上,一队每场比赛平均失球数是1.5,全年比赛失球个数的标准差为1.1;二队每场比赛平均失球数是2.1,全年失球个数的标准差是0.4,你认为下列说法中正确的个数有( )

①平均来说一队比二队防守技术好;②二队比一队防守技术水平更稳定;③一队防守有时表现很差,有时表现又非常好;④二队很少不失球.

A. 1个 B. 2个 C. 3个 D. 4个

【答案】D

【解析】在(1)中,一队每场比赛平均失球数是1.5,二队每场比赛平均失球数是2.1,
∴平均说来一队比二队防守技术好,故(1)正确;
在(2)中,一队全年比赛失球个数的标准差为1.1,二队全年比赛失球个数的标准差为0.4,
∴二队比一队技术水平更稳定,故(2)正确;
在(3)中,一队全年比赛失球个数的标准差为1.1,二队全年比赛失球个数的标准差为0.4,
∴一队有时表现很差,有时表现又非常好,故(3)正确;
在(4)中,二队每场比赛平均失球数是2.1,全年比赛失球个数的标准差为0.4,
∴二队很少不失球,故(4)正确.

故选:D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥 直线与平面 的中点 .

(Ⅰ)若求证平面平面

(Ⅱ)若求直线与平面所成角的正弦值的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 .

(1)若函数上单调递增,求的取值范围;

(2)设,点是曲线的一个交点,且这两曲线在点处的切线互相垂直,证明:存在唯一的实数满足题意,且.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随即编号为1,2…960,分组后在第一组采用简单随机抽样的方法抽到的号码为5,抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落入区间[451,750]的人做问卷B,其余的人做问卷C,则抽到的32人中,做问卷C的人数为(
A.15
B.10
C.9
D.7

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】经销商经销某种农产品,在一个销售季度内,每售出1t该产品获利润500元,未售出的产品,每1t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130t该农产品.以x(单位:t,100≤x≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.

(1)将T表示为x的函数;
(2)根据直方图估计利润T不少于57000元的概率;
(3)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若x∈[100,110))则取x=105,且x=105的概率等于需求量落入[100,110)的频率,求T的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出以下命题,其中真命题的个数是( )

①若“”是假命题,则“”是真命题;

②命题“若,则”为真命题;

③已知空间任意一点和不共线的三点,若,则四点共面;

④直线与双曲线交于两点,若,则这样的直线有3条;

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一次趣味校园运动会的颁奖仪式上,高一、高二、高三代表队人数分别为120人、120人、n人.为了活跃气氛,大会组委会在颁奖过程中穿插抽奖活动,并用分层抽样的方法从三个代表队中共抽取20人在前排就座,其中高二代表队有6人.

(1)求n的值;

(2)把在前排就座的高二代表队6人分别记为a,b,c,d,e,f,现随机从中抽取2人上台抽奖.求a和b至少有一人上台抽奖的概率;

(3)抽奖活动的规则是:代表通过操作按键使电脑自动产生两个[0,1]之间的均匀随机数x,y,并按如图所示的程序框图执行.若电脑显示中奖,则该代表中奖;若电脑显示谢谢,则不中奖,求该代表中奖的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C:y2=4x,焦点为F,过点P(﹣1,0)作斜率为k(k>0)的直线l与抛物线C交于A,B两点,直线AF,BF分别交抛物线C于M,N两点,若 + =18,则k=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图(1)是一正方体的表面展开图,MN和PB是两条面对角线,请在图(2)的正方体中将MN和PB画出来,并就这个正方体解决下面问题。

(1)求证:MN∥平面PBD;

(2)求证:平面

(3)求PB和平面NMB所成的角的大小.

查看答案和解析>>

同步练习册答案