精英家教网 > 高中数学 > 题目详情
已知椭圆
x2
8
+
y2
m
=1
,长轴在y轴上,若焦距为4,则m等于
12
12
分析:根据椭圆的长轴在y轴上可得a2=m,b2=8,结合焦距为4和椭圆基本量的平方关系,建立关于m的方程解之即可得到实数m之值.
解答:解:∵椭圆
x2
8
+
y2
m
=1
,长轴在y轴上,
∴a2=m,b2=8
又∵焦距为2c=4,得c=2
∴a2-b2=c2,即m-8=4,解之得m=12
故答案为:12
点评:本题给出椭圆长轴在y轴上,在已知焦距的情况下求参数m之值,着重考查了椭圆的标准方程与简单几何性质等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆的中心在原点,离心率e=
1
2
,且它的一个焦点与抛物线y2=-4x的焦点重合,则此椭圆方程为(  )
A、
x2
4
+
y2
3
=1
B、
x2
8
+
y2
6
=1
C、
x2
2
+y2=1
D、
x2
4
+y2=1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•山东)已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
3
2
,与双曲线x2-y2=1的渐近线有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆c的方程为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
2
2
,双曲线x2-y2=1的渐近线与椭圆C有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆C的方程为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知椭圆E:
x2
8
+
y2
4
=1
焦点为F1、F2,双曲线G:x2-y2=4,设P是双曲线G上异于顶点的任一点,直线PF1、PF2与椭圆的交点分别为A、B和C、D.
(1)设直线PF1、PF2的斜率分别为k1和k2,求k1•k2的值;
(2)是否存在常数λ,使得|AB|+|CD|=λ|AB|•|CD|恒成立?若存在,试求出λ的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
25
+
y2
16
=1
与双曲线
x2
8
-y2=1
有公共焦点F1,F2,P为椭圆与双曲线的一个交点,则面积SPF1F2为(  )
A、3B、4C、5D、6

查看答案和解析>>

同步练习册答案