精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,

已知圆和圆.

1)若直线过点,且被圆截得的弦长为

求直线的方程;(2)设P为平面上的点,满足:

存在过点P的无穷多对互相垂直的直线

它们分别与圆和圆相交,且直线被圆

截得的弦长与直线被圆截得的弦长相等,试求所有满足条件的点P的坐标。

【答案】(1)(2)P在以C1C2的中垂线上,且与C1C2等腰直角三角形,利用几何关系计算可得点P坐标为

【解析】

(1)设直线l的方程为yk(x4),即kxy4k0.由垂径定理,得圆心C1到直线l的距离d1,结合点到直线距离公式,得1,化简得24k27k0,解得k0k=-.

所求直线l的方程为y0y=-(x4),即y07x24y280.

(2)设点P坐标为(mn),直线l1l2的方程分别为ynk(xm)yn=-(xm),即kxynkm0,-xynm0.

因为直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,两圆半径相等.由垂径定理,得圆心C1到直线l1与圆心C2到直线l2的距离相等.故有

化简得(2mn)kmn3(mn8)kmn5.

因为关于k的方程有无穷多解,所以有

解得点P坐标为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]

在直角坐标系中,曲线的参数方程为为参数,),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求的普通方程和极坐标方程;

(2)若相交于两点,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法错误的是  

A. 棱柱的侧面都是平行四边形

B. 所有面都是三角形的多面体一定是三棱锥

C. 用一个平面去截正方体,截面图形可能是五边形

D. 将直角三角形绕其直角边所在直线旋转一周所得的几何体是圆锥

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点为别为F1F2,且过点

1)求椭圆的标准方程;

2)如图,点A为椭圆上一位于x轴上方的动点,AF2的延长线与椭圆交于点BAO的延长线与椭圆交于点C,求ABC面积的最大值,并写出取到最大值时直线BC的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】首项为O的无穷数列同时满足下面两个条件:

;②

(1)请直接写出的所有可能值;

(2)记,若对任意成立,求的通项公式;

(3)对于给定的正整数,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】科研人员在对人体脂肪含量和年龄之间关系的研究中,获得了一些年龄和脂肪含量的简单随机样本数据,如下表:

(年龄/岁)

26

27

39

41

49

53

56

58

60

61

(脂肪含量/%)

14.5

17.8

21.2

25.9

26.3

29.6

31.4

33.5

35.2

34.6

根据上表的数据得到如下的散点图.

(1)根据上表中的样本数据及其散点图:

(i)求

(i)计算样本相关系数(精确到0.01),并刻画它们的相关程度.

(2)若关于的线性回归方程为,求的值(精确到0.01),并根据回归方程估计年龄为50岁时人体的脂肪含量.

附:参考数据:

参考公式:相关系数

回归方程中斜率和截距的最小二乘估计公式分别为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,动点分别与两个定点的连线的斜率之积为.

(1)求动点的轨迹的方程;

(2)设过点的直线与轨迹交于两点,判断直线与以线段为直径的圆的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某农户计划种植莴笋和西红柿,种植面积不超过亩,投入资金不超过万元,假设种植莴笋和西红柿的产量、成本和售价如下表:

年产量/亩

年种植成本/亩

每吨售价

莴笋

5吨

1万元

0.5万元

西红柿

4.5吨

0.5万元

0.4万元

那么,该农户一年种植总利润(总利润=总销售收入-总种植成本)的最大值为____万元

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两个平面垂直,下列命题

①一个平面内已知直线必垂直于另一个平面内的任意一条直线

②一个平面内的已知直线必垂直于另一个平面的无数条直线

③一个平面内的任一条直线必垂直于另一个平面

④过一个平面内任意一点作交线的垂线,则此垂线必垂直于另一个平面

其中不正确命题的个数是(

A.3B.2C.1D.0

查看答案和解析>>

同步练习册答案