精英家教网 > 高中数学 > 题目详情

如图,在正方体中.

(1)求证:平面
(2)求直线与平面所成的角.

(1)证明详见解析;(2).

解析试题分析:(1)要证平面,只须证与平面内的两条相交直线垂直;因为六面体为正方体,易得,且,进而可得,问题得证;(2)先连接于点或过点于点,然后根据平面,可证得平面,从而可确定为所求,最后在中求解即可.
试题解析:(1)在正方体中,又,且

在平面内,且相交
平面                            6分

(2)过点于点,连接                7分
由于四边形为正方形,所以的中点
,而平面
平面
与面所成的角                      9分
中,
                            11分
直线与平面所成的角为                  12分.
考点:1.空间中的垂直关系;2.线面角.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在中,,斜边可以通过 以直线为轴旋转得到,且二面角是直二面角.动点在斜边上.

(1)求证:平面平面
(2)求与平面所成角的最大角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱柱ABC-A1B1C1中,D是BC的中点.

(1)若E为A1C1的中点,求证:DE∥平面ABB1A1
(2)若E为A1C1上一点,且A1B∥平面B1DE,求的值..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四边形ABCD为正方形,在四边形ADPQ中,PD∥QA.又QA⊥平面ABCD,QA=AB=PD.

(1)证明:PQ⊥平面DCQ;
(2)CP上是否存在一点R,使QR∥平面ABCD,若存在,请求出R的位置,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在空间四边形中,分别是上的点,分别是上的点,且,求证:三条直线相交于同一点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在如图所示的几何体中,四边形ABCD为平行四边形,∠ACB=90°,EA⊥平面ABCD,EF∥AB,FG∥BC,EG∥AC,AB=2EF.若M是线段AD的中点,

求证:GM∥平面ABFE.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱柱ABCA1B1C1中,侧面AA1C1C⊥底面ABCAA1A1CAC=2,ABBCABBCOAC中点.
 
(1)证明:A1O⊥平面ABC
(2)若E是线段A1B上一点,且满足VEBCC1·VABCA1B1C1,求A1E的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在底面为平行四边形的四棱锥中,平面,且,点的中点.

(1)求证:
(2)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在正方体中,分别的中点.

(1)求证:
(2)已知是靠近的四等分点,求证:.

查看答案和解析>>

同步练习册答案