精英家教网 > 高中数学 > 题目详情
10.若图中的三个直角三角形是一个体积为20cm3的几何体的三视图,则这个几何体外接球的表面积为(  )
A.25xcm2B.$\frac{77π}{2}$cm2C.77πcm2D.144πcm2

分析 根据几何体的三视图,得出该几何体是底面直角三角形,侧棱垂直底面的三棱锥,结合图形求出高h,可得几何体外接球的半径R=$\frac{\sqrt{77}}{2}$,即可求出几何体外接球的表面积.

解答 解:根据几何体的三视图,得:
该几何体是底面为直角三角形,侧棱PA⊥底面ABC的三棱锥,如图所示;
∴底面ABC的面积为$\frac{1}{2}$×5×6=15;
该三棱锥的体积为$\frac{1}{3}$×15×h=20,
解得h=4,
∴几何体外接球的直径2R=$\sqrt{{4}^{2}+{5}^{2}+{6}^{2}}$=$\sqrt{77}$,
∴几何体外接球的半径R=$\frac{\sqrt{77}}{2}$,
∴几何体外接球的表面积为4πR2=77πcm2
故选:C.

点评 本题考查了空间几何体的三视图的应用问题,解题时应画出图形,结合图形解答问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.如图,在棱长为2的正方体ABCD一A1B1C1D1中,点E,F,G分别是边AB,BC,AA1上的点,记AE=x,BF=y,A1G=z,
(1)若x=y=z=1,记平面EFG与边CC1的交点为H,求异面直线A1E与DH所成的角;(2)若x+y=2,求证:截面EFG⊥平面BDD1B1
(3)若x=z,且y=1,求三棱锥B1-GEF的体积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.为了考察高中生的性别与是否喜欢数学课程之间的关系,在我市的某校高中生中随即抽取了100名学生,得到如下联表:
  不喜欢数学课程喜欢数学课程 总计 
 男 45 10 55
 女 30 15 45
 总 75 25100
由表中数据,计算得K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$≈3.03,
附表:
 P(K2≥k0 0.100.05 0.025 
 k0 2.706 3.8415.024
参照附表,则下列结论正确的是(  )
A.有90%以上的把握认为“性别与是否喜欢数学课程有关”
B.有90%以上的把握认为“性别与是否喜欢数学课程没有关”
C.在犯错误的概率不超过1%的前提下,认为“性别与是否喜欢数学课程有关”
D.在犯错误的概率不超过1%的前提下,认为“性别与是否喜欢数学课程没有关”

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆C的中心在原点,焦点在x轴上,离心率为$\frac{\sqrt{2}}{2}$,且一个焦点和短轴的两个端点构成面积为1的等腰直角三角形.
(1)求椭圆的标准方程;
(2)过椭圆C右焦点F作直线交椭圆C于点M,N,又直线OM交直线x=2于点T,$\overrightarrow{OT}$=2$\overrightarrow{OM}$,求线段MN的长;
(3)半径为r的圆Q以椭圆C的右顶点为圆心,若存在直线l:y=kx,使直线l与椭圆C交于A,B两点,与圆Q分别交于G、H两点,点G在线段AB上,且|AG|=|BH|,求圆O的半径r的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在等差数列{an}中,首项a1=3,公差d=2,若某学生对其中连续10项迸行求和,在遗漏掉一项的情况下,求得余下9项的和为185,则此连续10项的和为200.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知动圆C与直线x+y+2=0相切于点A(0,-2),圆C被x轴所截得的弦长为2,则满足条件的所有圆C的半径之和是6$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知f(x)=|x2-k|在[0,2]上的最大值为2,则常数k等于2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若集合A={(x,y)|y=-$\sqrt{9-{x}^{2}}$},B={(x,y)|x+y+m=0},且A∩B≠∅,则实数m的取值范围[-3,3$\sqrt{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设函数y=f(x)定义域为D,若对于任意x1,x2∈D且x1+x2=2a,恒有f(x1)+f(x2)=2b,则称点(a,b)为函数y=f(x)图象的对称中心.研究并利用函数f(x)=x3-3x2-sin(πx)的对称中心,计算$S=f(\frac{1}{2015})+f(\frac{2}{2015})+…+f(\frac{4028}{2015})+f(\frac{4029}{2015})$的值(  )
A.-8058B.8058C.-8060D.8060

查看答案和解析>>

同步练习册答案