精英家教网 > 高中数学 > 题目详情
(2009•大连一模)若定义域为[2a-1,a2+1]的函数f(x)=ax2+bx+2a-b是偶函数,则点(a,b)的轨迹是(  )
分析:函数是偶函数,则其定义域关于原点对称,由此求出a的值,把a代入函数解析式后,再利用偶函数的定义求出b的值,则点(a,b)的轨迹可求.
解答:解:由定义域为[2a-1,a2+1]的函数f(x)=ax2+bx+2a-b是偶函数,
则2a-1+a2+1=0,即a2+2a=0,解得:a=0或a=-2.
当a=0时,函数f(x)=ax2+bx+2a-b=bx-b.
由f(-x)=f(x)得:-bx-b=bx-b,所以b=0;
当a=-2时,函数f(x)=ax2+bx+2a-b=-2x2+bx-b-4.
由f(-x)=f(x)得:-2(-x)2-bx-b-4=-2x2+bx-b-4.所以b=0.
所以满足定义域为[2a-1,a2+1]的函数f(x)=ax2+bx+2a-b是偶函数的点(a,b)的轨迹是点(0,0),(-2,0)
故选B.
点评:本题考查了函数奇偶性的性质,偶函数的图象关于y轴轴对称,训练了利用方程恒成立求参数的值,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2009•大连一模)设全集U=R,若A={x|
1
x
>0},则?UA为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•大连一模)二项式(1+i)10(其中i2=-1)展开的第三项的虚部为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•大连一模)若tanα=2,则sinαcosα的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•大连一模)在平面直角坐标系中,不等式组
x+y≥0
x-y≥0,(a为常数)
x≤a
所表示的平面区域的面积是4,动点(x,y)在该区域内,则x+2y的最小值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•大连一模)已知正方体ABCD-A1B1C1D1如图所示,则直线B1D和CD1所成的角为(  )

查看答案和解析>>

同步练习册答案