精英家教网 > 高中数学 > 题目详情
选修4-1:集合证明选讲
已知AB是圆O的直径,C为圆O上一点,CD⊥AB于点D,弦BE与CD、AC分别交于点M、N,且MN=MC
(1)求证:MN=MB;
(2)求证:OC⊥MN.
分析:(1)连结AE,BC,根据直径所对的圆周角是直角,得∠AEB=90°,根据等量代换得∠MBC=∠MCB,最后利用三角形的性质即可得出MB=MC,从而得到MN=MB;
(2)设OC∩BE=F,根据OB=OC,得到∠OBC=∠OCB,再由(1)知,∠MBC=∠MCB,等量代换得∠MDB=∠MFC,即∠MFC=90°即可证出结论.
解答:证明:(Ⅰ)连结AE,BC,∵AB是圆O的直径,∴∠AEB=90°,∠ACB=90°
∵MN=MC,∴∠MCN=∠MNC
又∵∠ENA=∠MNC,∴∠ENA=∠MCN
∴∠EAC=∠DCB,∵∠EAC=∠EBC,∴∠MBC=∠MCB,
∴MB=MC,
∴MN=MB.…(5分)
(Ⅱ)设OC∩BE=F,
∵OB=OC,∴∠OBC=∠OCB
由(Ⅰ)知,∠MBC=∠MCB,∴∠DBM=∠FCM.又∵∠DMB=∠FMC
∴∠MDB=∠MFC,即∠MFC=90°∴OC⊥MN.…(10分)
点评:本小题主要考查与圆有关的比例线段、圆的性质的应用等基础知识,考查化归与转化思想.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(A)选修4-1:几何证明选讲
如图,⊙O的割线PAB交⊙O于A,B两点,割线PCD经过圆心交⊙O于C,D两点,若PA=2,AB=4,PO=5,则⊙O的半径长为
13
13


(B)选修4-4:坐标系与参数方程
参数方程
x=
1
2
(et+e-t)
y=
1
2
(et-e-t)
中当t为参数时,化为普通方程为
x2-y2=1
x2-y2=1

(C)选修4-5:不等式选讲
不等式|x-2|-|x+1|≤a对于任意x∈R恒成立,则实数a的集合为
{a|a≥3}
{a|a≥3}

查看答案和解析>>

科目:高中数学 来源: 题型:

A)选修4-1:几何证明选讲
如图,⊙O的割线PAB交⊙O于A,B两点,割线PCD经过圆心交⊙O于C,D两点,若PA=2,AB=4,PO=5,则⊙O的半径长为
13
13


(B)选修4-4:坐标系与参数方程
参数方程
x=
1
2
(et+e-t)
y=
1
2
(et-e-t)
中当t为参数时,化为普通方程为
x2-y2=1(x≥1)
x2-y2=1(x≥1)

(C)选修4-5:不等式选讲
不等式|2-x|+|x+1|≤a对于任意x∈[0,5]恒成立的实数a的集合为
{a|a≥9}
{a|a≥9}

查看答案和解析>>

科目:高中数学 来源:2013年辽宁省高考数学模拟最后一卷(文科)(解析版) 题型:解答题

选修4-1:集合证明选讲
已知AB是圆O的直径,C为圆O上一点,CD⊥AB于点D,弦BE与CD、AC分别交于点M、N,且MN=MC
(1)求证:MN=MB;
(2)求证:OC⊥MN.

查看答案和解析>>

科目:高中数学 来源:2012年陕西省西安市高新一中高三大练习数学试卷(理科)(解析版) 题型:填空题

(A)选修4-1:几何证明选讲
如图,⊙O的割线PAB交⊙O于A,B两点,割线PCD经过圆心交⊙O于C,D两点,若PA=2,AB=4,PO=5,则⊙O的半径长为   

(B)选修4-4:坐标系与参数方程
参数方程中当t为参数时,化为普通方程为   
(C)选修4-5:不等式选讲
不等式|2-x|+|x+1|≤a对于任意x∈[0,5]恒成立的实数a的集合为   

查看答案和解析>>

同步练习册答案