精英家教网 > 高中数学 > 题目详情

已知双曲线的离心率为,右准线方程为,

(1)求双曲线C的方程;

(2)已知直线与双曲线C交于不同的两点A,B,且线段AB的中点在以双曲线C的实轴长为直径的圆上,求m的值.

 

【答案】

(1);(2).

【解析】

试题分析:(1)因为这是双曲线的标准方程,故由双曲线的几何性质知,这样就可求出双曲线方程;(2)这是直线与双曲线相交,且与相交弦中点有关问题,一般方法就是把直线方程与双曲线方程联立方程组,消去得关于的方程,再由韦达定理得,如果记AB中点为,则,从而可把中点坐标用参数表示出来了,最后利用中点M在圆上,可求出值.

试题解析:(1)由已知得,解得,∴

∴双曲线方程为.                4分

(2)以双曲线实轴为直径的圆的方程是:,把代入双曲线方程刘:

,令的中点,则有:

  ,代入圆方程

中得:  ,所以.

考点:(1)双曲线的几何性质;(2)直线与双曲线相交问题.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线的离心率为2,焦点是(-4,0),(4,0),则双曲线方程为(  )
A、
x2
4
-
y2
12
=1
B、
x2
12
-
y2
4
=1
C、
x2
10
-
y2
6
=1
D、
x2
6
-
y2
10
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线的离心率为2,F1、F2是左右焦点,P为双曲线上一点,且∠F1PF2=60°,S△PF1F2=12
3
.该双曲线的标准方程为
x2
4
-
y2
12
=1
x2
4
-
y2
12
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线的离心率为2,焦点是(-4,0),(4,0),则双曲线方程为
x2
4
-
y2
12
=1
x2
4
-
y2
12
=1

查看答案和解析>>

科目:高中数学 来源:2011-2012学年云南省高三上学期第一次月考试题文科数学 题型:解答题

(本小题满分12分)

已知双曲线的离心率为2,焦点到渐近线的距离等于,过右焦点的直线

 

交双曲线于两点,为左焦点,

(Ⅰ)求双曲线的方程;

(Ⅱ)若的面积等于,求直线的方程.

 

查看答案和解析>>

科目:高中数学 来源:2013届河北省高二上学期第二次月考理科数学试卷 题型:解答题

已知双曲线的离心率为2,焦点到渐近线的距离为,点P的坐标为(0,-2),过P的直线l与双曲线C交于不同两点M、N.  

(1)求双曲线C的方程;

(2)设(O为坐标原点),求t的取值范围

 

查看答案和解析>>

同步练习册答案