精英家教网 > 高中数学 > 题目详情

【题目】某工厂有工人1000名,其中250名工人参加过短期培训(称为A类工人),另外750名工人参加过长期培训(称为B类工人).现用分层抽样方法(按A类,B类分二层)从该工厂的工人中共抽查100名工人,调查他们的生产能力(生产能力指一天加工的零件数).

1A类工人中和B类工人中各抽查多少工人?

2)从A类工人中的抽查结果和从B类工人中的抽查结果分别如下表1和表2.

表一

生产能力分组

[100,110)

[110,120)

[120,130)

[130,140)

[140,150)

人数

4

8

5

3

表二

生产能力分组

[110,120)

[120,130)

[130,140)

[140,150)

人数

6

36

18

①先确定再补全下列频率分布直方图(用阴影部分表示).

②就生产能力而言,类工人中个体间的差异程度与类工人中个体间的差异程度哪个更小?(不用计算,可通过观察直方图直接回答结论)

③分别估计类工人生产能力的平均数和中位数(求平均数时同一组中的数据用该组区间的中点值作代表).

【答案】125,75名;(2)①直方图见解析;②类工人中个体间的差异程度更小;③123,121.

【解析】

1)由分层抽样性质能求出类工人中和类工人中各抽查多少工人.

2)①由频率分布表列出方程能求出补,并补全下列频率分布直方图.

②从频率分布直方图可以判断:类工人中个体间的差异程度更小.

③由频率分布直方图求出类工人生产能力的平均数和中位数.

解:(1)由分层抽样性质得:

类工人中抽查:名工人,

类工人中抽查:名工人.

2)①由题意得:,解得

,解得

补全频率分布直方图,如下图:

②从频率分布直方图可以判断:类工人中个体间的差异程度更小.

类工人生产能力的平均数为:

类工人生产能力的中位数的估计值为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,求函数的单调区间;

2)若存在与函数的图象都相切的直线,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥PABCD中,底面ABCD是平行四边形,∠ADC60°ADAC2OAC的中点,PO⊥平面ABCDPO4MPD的中点.

1)证明:MO∥平面PAB

2)求直线AM与平面ABCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是平行四边形,平面的中点.

(I)求证,平面

(II)若,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.若方程有且只有两个不同的实根,则实数的取值范围为 ( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用系统抽样法从140名学生中抽取容量为20的样本,将140名学生从1140编号.按编号顺序平均分成20组(17号,814号,134140号),若第17组抽出的号码为117,则第一组中按此抽样方法确定的号码是(

A.7B.5C.4D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有编号为10个零件,测量其直径(单位:cm),得到下面数据:

编号

直径

1.51

1.49

1.49

1.51

1.49

1.51

1.47

1.46

1.53

1.47

其中直径在区间内的零件为一等品.

1)上述10个零件中,随机抽取1个,求这个零件为一等品的概率.

2)从一等品零件中,随机抽取2个;

①用零件的编号列出所有可能的抽取结果;

②求这2个零件直径相等的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的四个顶点围成的菱形的面积为,椭圆的一个焦点为圆的圆心.

(1)求椭圆的方程;

(2)MN为椭圆上的两个动点,直线OMON的斜率分别为,当时,△MON的面积是否为定值?若为定值,求出此定值;若不为定值,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某调研机构,对本地岁的人群随机抽取人进行了一次生活习惯是否符合低碳观念的调查,将生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,结果显示,有人为“低碳族”,该人的年龄情况对应的频率分布直方图如图.

1)根据频率分布直方图,估计这名“低碳族”年龄的平均值,中位数;

2)若在“低碳族”且年龄在的两组人群中,用分层抽样的方法抽取人,试估算每个年龄段应各抽取多少人?

查看答案和解析>>

同步练习册答案