精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
lnx
x
-1
(1)判断函数f(x)的单调性
(2)设m>0,求f(x)在[m,2m]上的最大值
(3)证明:?n∈N*不等式ln(
1+n
n
)e
1+n
n
分析:(1)利用商的求导法则求出所给函数的导函数是解决本题的关键,利用导函数的正负确定出函数的单调性;
(2)利用导数作为工具求出函数在闭区间上的最值问题,注意分类讨论思想的运用;
(3)利用导数作为工具完成该不等式的证明,注意应用函数的最值性质.
解答:解:(1)函数f(x)的定义域是:(0,+∞)
由已知 f(x)=
1-lnx
x2

令f′(x)=0得,1-lnx=0,∴x=e
∵当0<x<e时,f(x)=
1-lnx
x2
>0

当x>e时,f(x)=
1-lnx
x2
<0

∴函数f(x)在(0,e]上单调递增,在[e,+∞)上单调递减,
(2)由(1)知函数f(x)在(0,e]上单调递增,在[e,+∞)上单调递减
故①当0<2m≤e即 0<m≤
e
2
时,f(x)在[m,2m]上单调递增
f(x)max=f(2m)=
ln(2m)
2m
-1

②当m≥e时,f(x)在[m,2m]上单调递减
f(x)max=f(m)=
lnm
m
-1

③当m<e<2m,即
e
2
<m<e

f(x)max=f(e)=
1
e
-1

(3)由(1)知,当x∈(0,+∞)时,f(x)max=f(e)=
1
e
-1

∴在(0,+∞)上恒有 f(x)=
lnx
x
-1≤
1
e
-1

lnx
x
1
e
且当x=e时“=”成立,
∴对?x∈(0,+∞)恒有 lnx≤
1
e
x

1+n
n
>0,
1+n
n
≠e

ln
1+n
n
1
e
1+n
n
?ln(
1+n
n
)e
1+n
n

即对?n∈N*,不等式 ln(
1+n
n
)e
1+n
n
恒成立.
点评:此题是个中档题.本题考查导数在函数中的应用问题,考查函数的定义域思想,考查导数的计算,考查导数与函数单调性的关系,考查函数的最值与导数的关系,体现了等价转化的数学思想和分类讨论的思想,同时考查了学生的计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x3-
3
2
ax2-(a-3)x+b

(1)若函数f(x)在P(0,f(0))的切线方程为y=5x+1,求实数a,b的值:
(2)当a<3时,令g(x)=
f′(x)
x
,求y=g(x)在[l,2]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
x2-alnx
的图象在点P(2,f(2))处的切线方程为l:y=x+b
(1)求出函数y=f(x)的表达式和切线l的方程;
(2)当x∈[
1
e
,e]
时(其中e=2.71828…),不等式f(x)<k恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx,g(x)=
12
x2+a
(a为常数),直线l与函数f(x)、g(x)的图象都相切,且l与函数f(x)的图象的切点的横坐标为1.
(1)求直线l的方程及a的值;
(2)当k>0时,试讨论方程f(1+x2)-g(x)=k的解的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
13
x3+x2+ax

(1)讨论f(x)的单调性;
(2)设f(x)有两个极值点x1,x2,若过两点(x1,f(x1)),(x2,f(x2))的直线l与x轴的交点在曲线y=f(x)上,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-
32
ax2+b
,a,b为实数,x∈R,a∈R.
(1)当1<a<2时,若f(x)在区间[-1,1]上的最小值、最大值分别为-2、1,求a、b的值;
(2)在(1)的条件下,求经过点P(2,1)且与曲线f(x)相切的直线l的方程;
(3)试讨论函数F(x)=(f′(x)-2x2+4ax+a+1)•ex的极值点的个数.

查看答案和解析>>

同步练习册答案