精英家教网 > 高中数学 > 题目详情
某小学教师准备购买一些签字笔和铅笔盒作为奖品,已知签字笔每支5元,铅笔盒每个6元,花费总额不能超过50元.为了便于学生选择,购买签字笔和铅笔盒的个数均不能少于3个,那么该教师有
 
种不同的购买奖品方案.
考点:简单线性规划
专题:数形结合
分析:设出该教师购买签字笔x个,铅笔盒y个,由题意列出不等式组
x≥3
y≥3
5x+6y≤50
,作出可行域,求出可行域内的整解得答案.
解答: 解:该教师购买签字笔x个,铅笔盒y个,
x≥3
y≥3
5x+6y≤50

作出可行域如图,

可行域内的整点为:(3,3),(3,4),(3,5),(4,3),
(4,4),(4,5),(5,3),(5,4),(6,3)共9组.
∴该教师有9种不同的购买奖品方案.
故答案为:9.
点评:本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2sin(2x+
π
6
)
,将y=f(x)的图象向左平移φ(0<φ<π)个单位后得到函数y=g(x)的图象,若y=g(x)的图象上最高点到点(0,3)的距离的最小值为1,则φ的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1=3,an+1=an+p•2n+1(n∈N*,p为常数),a1,a2+1,a3成等差数列.(1)求p的值和数列{an}的通项公式;(2)设数列{bn}的前n项和为Sn,且b2=4,满足4 Sn-n=(an-n) bn(n∈N*),求证:(1+
1
bn
 
1
2
bn
5
3

查看答案和解析>>

科目:高中数学 来源: 题型:

设D为不等式组
x+y≤1
2x-y≥-1
x-2y≤1
表示的平面区域,点B(a,b)为坐标平面xOy内一点,若对于区域D内的任一点A(x,y),都有
OA
OB
≤1
成立,则a+b的最大值等于(  )
A、2B、1C、0D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

一个四棱锥的三视图如图所示,那么对于这个四棱锥,下列说法中正确的是(  ) 
A、最长棱的棱长为
6
B、最长棱的棱长为3
C、侧面四个三角形中有且仅有一个是正三角形
D、侧面四个三角形都是直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

某工厂接到一标识制作订单,标识如图所示,分为两部分,“T型”部分为宽为10cm 的两个矩形相接而成,圆面部分的圆周是A,C,D,F的外接圆.要求如下:①“T型”部分的面积不得小于800cm2;②两矩形的长均大于外接圆半径.为了节约成本,设计时应尽量减小圆面的面积.此工厂的设计师,凭直觉认为当“T型”部分的面积取800cm2且两矩形的长相等时,成本是最低的.你同意他的观点吗?试通过计算,说说你的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=lnx-x-a有两个不同的零点,则实数a的取值范围是(  )
A、(-∞,-1]
B、(-∞,-1)
C、[-1,+∞)
D、(-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
x
ln(x-2)
的定义域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在一个盒子中,放有标号分别为1,2,3的三个小球,现从这个盒子中,有放回地先后抽得两个小球的标号分别为x、y,设O为坐标原点,设M的坐标为(x-2,x-y).
(1)求|
OM
|2的所有取值之和;
(2)求事件“|
OM
|2取得最大值”的概率.

查看答案和解析>>

同步练习册答案